Классификация компьютерных сетей по степени географического распространения. Как соединяются между собой устройства сети. Информационные технологии, интернет, веб программирование, IT, Hi-Tech, …

15.02.1997 Мирослав Макстеник

Требования к современным компьютерным сетям Примеры сетевых архитектур Методика оценки сетевых архитектур Корреляционный анализ Совместная обработка изображений Моделирование окружающей среды Построение сетей В связи с развитием компьютерных технологий разработка сетей усложнилась.

Рисунок 2.
Маршрутизируемая магистраль.

Недостатком такой сети является ее ограниченная масштабируемость. Кроме того, для поддержания в маршрутизируемой магистрали достаточно большой скорости передачи данных необходим очень производительный маршрутизатор. Эта архитектура не предусматривает никакой

иерархической структуры магистрали, поскольку сервер напрямую подключается к ней через 10 Мбит/с Ethernet. Такое подключение может создавать заторы, например когда большое число пользователей хочет получить доступ к совместно используемой базе данных.

FDDI-магистраль (рисунок 3) - это единый канал, связывающий FDDI-серверы с рабочими группами Ethernet через один или несколько маршрутизаторов среднего класса. Такая сеть может объединять компьютеры, расположенные в отдельном здании или небольшом университетском городке.

(1x1)

Рисунок 3.
FDDI-магистраль.

Простота управления протоколами и возможность установки защитного экрана на границе между рабочей группой и магистралью - основные достоинства такой архитектуры. Высокоскоростная магистраль обрабатывает общий поток информации и высокоскоростные операции сервер-сервер. Хорошая масштабируемость обеспечивается тем, что к FDDI-магистрали можно подключить много рабочих групп и маршрутизаторов, прежде чем будут полностью исчерпаны ресурсы этой архитектуры.

Однако изменение конфигурации сети приводит к появлению большого количества портов на маршрутизаторах, каждый со своим адресом подсети. Управление всеми устройствами и адресами - тяжелая работа, с которой может справиться только опытный администратор. Ретрансляция между маршрутизатором Ethernet и FDDI-сетью может снизить производительность программного обеспечения. Проблема усугубляется, если FDDI-магистраль необходимо сегментировать для передачи больших объемов информации.

Сеть с коммутацией кадров 10/100 (рисунок 4) строится на основе коммутаторов, каждый из которых имеет двенадцать 10 Мбит/с интерфейсов с концентраторами рабочих групп (или рабочими станциями) и два 100 Мбит/с интерфейса для связи с серверами. Такая архитектура может использоваться для обеспечения высокой производительности сети в рабочих группах или для создания магистрали.

(1х1)

Рисунок 4.
Сеть с коммутацией кадров 10/100.

Эта архитектура очень проста, что облегчает управление сетью. При этом "чистые" Ethernet-сети обычно работают по принципу plug-and-play. "Virtual LAN" позволяет создавать логические рабочие группы и устанавливать защитный экран. Высокая производительность сети обеспечивает хорошее время реакции клиент-серверного программного обеспечения при передаче информации между серверами и централизованными ресурсами.

К сожалению, продукты для такой архитектуры, поддерживающие сети Token Ring, появились только к концу 1995 г., поэтому их "развитие" несколько запоздало. Кроме того, способы объединения пользователей и устройств в логические группы с помощью коммутаторов не стандартизированы, и реализация этой возможности у различных производителей может различаться. Поэтому при создании сети очень важно правильно выбрать производителя продуктов для коммутации кадров.

ATM-коммутатор связывает ATM-серверы, адаптеры Adj Path и 150 Мбит/с ATM-каналы с коммутатором ячеек магистрали (рисунок 5). Адаптеры Adj Path обеспечивают 10 Мбит/с Ethernet-связи серверов с рабочими группами или отдельными компьютерами. Такая архитектура может использоваться для обеспечения высокой производительности в рабочих группах или создания магистралей в одном или нескольких зданиях.

(1х1)

Рисунок 5.
ATM и коммутацией кадров.

Созданная в соответствии с такой архитектурой высокоскоростная магистраль позволяет обрабатывать большое количество информации и эффективно осуществлять операции сервер-сервер. Отличная масштабируемость этой архитектуры позволяет создавать смешанную систему коммутаторов кадров или ячеек. Скорость отдельного интерфейса можно увеличить с помощью Fast Ethernet или более скоростных ATM-связей. "Virtual LAN" позволяет создавать рабочие группы управления, а серверы могут быть централизованы, хотя логически будут оставаться близко к пользователям, что упрощает администрирование сети.

ATM - сравнительно молодая технология, поэтому стандарты для нее еще не до конца сформированы. Следовательно, ATM-решения потребуют контактов с поставщиками оборудования.

Методика оценки сетевых архитектур

Сравнение сетей, построенных на основе описанных выше сетевых архитектур, производилось по скорости выполнения трех различных операций:

  • классического обмена информацией между клиентом и сервером;
  • совместной обработки изображений;
  • математического моделирования.

Результаты сравнения обощаются на рисунках (они будут приведены в следующих разделах), где показаны зависимости времени реакции сети от количества обслуживаемых пользователей при выполнении каждой из указанных операций и предложены различные архитектуры сетей для их поддержания. Для построения зависимостей использовались данные, полученные в результате моделирования сетевых операций с помощью процесса планирования Traffic Mappingo фирмы NCRI. Эти данные не универсальны и предназначены только для сравнения средней относительной производительности разных сетевых архитектур. Скорости передачи информации в реальных сетях могут отличаться от указанных. Это зависит от конкретной реализации продукта, дизайна и настройки программного обеспечения, а также способов их применения.

При моделировании сетевых операций были приняты следующие важные допущения и ограничения.

  • Реакция сети - это время, необходимое для выполнения исследуемой операции или группы операций. Время ответа сервера не учитывалось, исследовалась только производительность сети.
  • Чтобы получить возможность полноценного сравнения архитектур, для всех рабочих групп использовались только адаптеры Ethernet.
  • Предполагалось, что каждая операция выполняется в сети независимо от других. Например, в соответствии с результатами выполнения классической клиент-серверной операции в одном Ethernet-сегменте может работать более 40 пользователей, но это справедливо лишь в том случае, когда сеть выполняет только эту операцию.
  • Использовался только протокол TCP/IP.
  • Параметры производительности сетевых устройств, такие как задержки, время ожидания, общий диапазон и другие, соответствовали характеристикам реально существующих маршрутизаторов и коммутаторов.
  • Число пользователей, которые могут одновременно работать в сети с каждой конкретной архитектурой, определялось по следующей схеме.

    1. Подсчитывалось количество пользователей в рабочей группе, которые могут одновременно запустить исследуемую операцию.

    2. Определялся объем информации, который может сгенерировать одна рабочая группа.

    3. Подсчитывалось количество рабочих групп, которые могут одновременно использовать ресурсы магистрали.

    4. Число рабочих групп в магистрали умножалось на число пользователей в одной рабочей группе.

    С помощью этой схемы можно достаточно точно оценить число пользователей, которых может обслужить каждая сетевая архитектура. Максимальное число пользователей означает, что производительность какой-либо части сети достигла своего предела. Следует отметить, что число пользователей указано для обычной, а не "расщепленной" сетевой архитектуры.

    Итак, проведем сравнительный анализ характеристик описанных выше архитектур.

    Корреляционный анализ

    Для примера рассмотрим выполнение программы корреляционного анализа в реальной сети, работающей на целлюлозно-бумажной фабрике. Данная программа позволяет вместо ежедневного сбора данных о качестве продукции и их анализа (вручную) использовать операции типа "клиент-сервер". При этом предполагается, что будут сокращены потери и улучшено качество продукции более чем на 10%.

    Контроль качества при производстве целлюлозы и бумаги могут выполнять одновременно 20 пользователей. Оператор или инженер получает необходимую информацию с серверов, расположенных в разных местах большой фабрики. В процессе работы осуществляется анализ качества продукции и эффективности ее изготовления, а затем подготавливаются статистические отчеты, которые сохраняются на локальном файл-сервере. Корреляционный анализ может потребовать выполнения следующих операций:

    • передачи форм, триггеров и правил, используемых базой данных;
    • установки удаленной связи;
    • осуществления запроса на сервер и получения ответа с него;
    • записи результатов статистического анализа.

    Загрузка сети - умеренная. Большинство операций типа "клиент-сервер" выполняется между рабочей группой и магистралью, то есть между клиентами ЛВС и подключенным к магистрали сервером. Поскольку качество продукции контролируется в реальном времени, то информационный поток также зависит от времени. Поэтому для уменьшения количества ретрансляций необходима "плоская" сетевая архитектура. Максимальная нагрузка на сеть приходится на время пересменок, когда линия переключается на обслуживание новых продуктов, особых ситуаций на фабрике и проектов долговременного планирования.

    На рисунке 6 показано, какое время реакции сети необходимо для завершения большой программой корреляционного анализа операции типа "клиент-сервер". И хотя время реакции является важным параметром (поскольку программа работает в производственной среде), в данном случае он не является критичным, т.к. сеть должна одновременно поддерживать только 20 пользователей. Нужно учесть, что для вычисления истинного времени реакции системы следует ко времени передачи данных по сети добавить время обработки запроса на сервере. Например, если сервер обрабатывает запрос за 30 с, то на одну операцию в FDDI-среде тратится примерно 50 с (19 с сетевого времени плюс 30 с работы сервера), а в ATM-сети - только 40 с.

    (1x1)

    Рисунок 6.
    Характеристики цепей, обслуживающих программу корреляционного анализа.

    За точку отсчета взята производительность в рабочей группе Ethernet. Один сегмент Ethernet обеспечивает лучшее время реакции из всех возможных вариантов, поскольку между клиентом и сервером нет посредников, кроме собственно CSMA/CD-связи по Ethernet. К одной Ethernet-линии можно подключить более 40 клиентов, поэтому логично ожидать, что сеть сможет обслуживать 20 пользователей одновременно. К сожалению, длина кабеля Ethernet ограничена, поэтому вряд ли удастся подключить все компьютеры целлюлозно-бумажной фабрики к одному сегменту Ethernet. Следовательно, в данном случае такое решение не подходит.

    Время реакции в обеих коммутируемых архитектурах почти на 50% меньше, чем в традиционных FDDI-сетях с маршрутизацией или совместным доступом. Это достигается с помощью специализированных механизмов коммутации. Практически все разработчики согласны, что коммутаторы кадров будут обеспечивать меньшее время задержки, чем большинство мостов и маршрутизаторов, предлагаемых сегодня на рынке и используемых в корпоративных сетях. Более быстрые сети обеспечивают меньшее время реакции при выполнении клиент-серверных приложений.

    Маршрутизируемая фрагментированная магистраль поддерживает более 50 пользователей - немногим больше, чем обычный сегмент Ethernet. Ограничивающим фактором является Ethernet-канал между маршрутизатором и сервером, который работает с той же скоростью, что и остальная сеть, - 10 Мбит/с. Естественно, что когда пользователи нескольких рабочих групп пытаются одновременно получить доступ к серверу, в этом канале образуется затор. К сожалению, даже самый быстрый маршрутизатор не способен предотвратить этот затор, поскольку передача информации в стандартной Ethernet-связи не может осуществляться быстрее, чем со скоростью10 Мбит/с. Разработчики сети могут устранить затор, добавив более скоростное подключение к серверу, например FDDI или 100 Мбит/с Ethernet. Это может ускорить выполнение корреляционного анализа, даже если его будет осуществлять гораздо большее число пользователей.

    Использование коммутатора кадров 10/100 для выполнения программы корреляционного анализа позволяет избежать заторов на сервере, если установить на него коммутируемый 100 Мбит/с интерфейс. Поскольку в данной архитектуре к серверу может получить одновременный доступ большее количество пользователей из нескольких рабочих групп, то такая сеть обеспечивает поддержку 150 пользователей вместо 50. Кроме того, пользователи смогут оценить преимущества скоростной передачи, характерной для технологии коммутации.

    Даже если 12 рабочих групп Ethernet одновременно получат доступ к магистральному серверу, выделенный серверный 100 Мбит/с Ethernet-интерфейс не будет переполнен. Каждый из двенадцати 10 Мбит/с Ethernet-портов насыщается запросами и ответами клиентов, отправляемыми на сервер. Единственный фактор, ограничивающий число обслуживаемых пользователей, - количество коммутируемых 10 Мбит/с портов, к которым подключаются рабочие группы. Как только портов для подключения рабочих групп не остается, архитектура исчерпывает свои возможности. Чтобы обеспечить большее число Ethernet-портов, нужно подключить несколько коммутаторов, и тогда количество одновременно работающих пользователей можно будет увеличить.

    FDDI-решение обеспечивает высокоскоростную связь с серверами. В исследуемом случае это кольцо FDDI с совместным доступом, работающее со скоростью 100 Мбит/с. К FDDI-кольцу, в отличие от коммутатора кадров 10/100, можно подключать значительно больше рабочих групп, так как эта технология не имеет ограничений по количеству портов. Сетевые администраторы могут с помощью маршрутизатора, расположенного между Ethernet и FDDI, подключать рабочие группы к 100 Мбит/с кольцу, пока магистраль не будет полностью насыщена. Это решение позволяет обслуживать более 1300 пользователей.

    К сожалению, время реакции FDDI выше, чем в коммутируемой архитектуре, и оно будет увеличиваться, если сегментировать магистраль после ее насыщения. Это объясняется тем, что в сегментированной FDDI-магистрали информация во время каждого запроса серверу должна проходить через два маршрутизатора.

    ATM-решение обеспечивает отличное время реакции и обслуживает предельно большое количество пользователей. В сущности, ATM-решение поддерживает такое число пользователей, которое более чем в 400 раз превышает необходимое. Поэтому такая архитектура не является оптимальной.

    Вероятно, лучшим выбором для работы данного программного обеспечения является либо коммутация кадров 10/100, либо FDDI. Эти решения поддерживают высокоскоростные линии и могут передавать данные по оптоволоконному кабелю для подключения пользователей на значительном расстоянии. Заметим, что FDDI является более "традиционной" технологией для производственной сети, а решение с коммутацией кадров 10/100 обеспечивает лучшую производительность и, скорее всего, является более экономически выгодным, поскольку не требует дополнительных затрат на FDDI-интерфейсы.

    Совместная обработка изображений

    Цель рассматриваемого в данном разделе проекта - автоматизация обработки, хранения и получения графических изображений. Автоматическая обработка изображений экономит более 20% рабочего времени. Возможная область применения такой системы - инженерно-строительная фирма, в которой необходимо упростить электронное хранение, обработку и получение разрабатываемых документов. Одновременно в сети могут работать до 300 пользователей.

    При обработке изображений централизованная база данных служит депозитарием всех документов. Инженеры используют в сети электронную почту и программы совместной работы, а также запрашивают базы данных, чтобы определить, над каким проектом они должны работать. Система должна поддерживать следующие операции:

    • загрузку файлов САПР из депозитария изображений;
    • просмотр деталей изображения;
    • обновление записей и файлов;
    • проверку документов разработки;
    • отправку файлов на центральный сервер для преобразования;
    • запись обновленных файлов САПР на центральный сервер;
    • просмотр "почтового ящика" пользователя для получения новых заданий.

    Нагрузка на сеть в такой системе может быть различной - от умеренной до высокой (из-за частой передачи файлов САПР). Система, как это часто бывает с программным обеспечением для групповой работы, используется круглосуточно и ежедневно.

    На рисунке 7 показано, какое сетевое время необходимо для записи оптического изображения в базу данных центрального сервера с помощью программы групповой обработки изображений. В этой системе время реакции сервера будет сильно зависеть от выбора эффективной сетевой технологии. Медленная передача данных может привести компанию к существенным финансовым издержкам. Например, для 300 инженеров разница в скорости передачи, составляющая всего две минуты, приводит к общей потере 80 рабочих часов в день. Если рабочее время инженера оценивается в 100 дол. /ч, то за год только из-за медленной работы сети компания может потерять 2 млн дол.

    (1х1)

    Рисунок 7.
    Характеристики цепей, используемых для программ групповой обработки изображений.

    Ethernet-сегмент, естественно, имеет отличное время реакции, но, как и в примере с корреляционным анализом, он не может объединить 300 инженерных рабочих станций, серверы и соответствующее периферийное оборудование.

    Маршрутизируемая фрагментированная магистраль может поддерживать несколько сегментов и, соответственно, значительно больше пользователей, чем просто Ethernet-сеть, но она не обладает пропускной способностью, необходимой для обработки больших объемов чувствительной к задержкам информации между рабочими группами и "магистральным" сегментом Ethernet. Маршрутизатор просто не справится с огромным потоком информации, прежде чем интерфейсы будут насыщены. Маршрутизаторы среднего класса, разработанные за последние несколько лет, не предназначены для обеспечения производственного процесса с интенсивным использованием сети. Ни наличие единого сегмента, ни маршрутизируемая магистраль не способны поддерживать требуемое количество пользователей и не могут служить решением для данной системы.

    Сеть с коммутацией кадров 10/100 обеспечивает скорость передачи данных, аналогичную скорости в архитектуре Ethernet-сегмента. При этом к серверам может получить одновременный доступ необходимое количество пользователей, т.е. 300. К сожалению, такое число подключений - предел этой технологии, и поэтому в ней сложно работать с другими программами. Как и в случае с программой корреляционного анализа, число портов ограничивает количество обслуживаемых пользователей. Однако, в отличие от технологии маршрутизации, коммутация кадров 10/100 была разработана для обеспечения передачи сообщений на максимальной для всех каналов скорости, причем использование самого механизма коммутации не приводит к возникновению затора.

    Концепция кластеризации базы данных предполагает, что централизованные данные распределяются по нескольким более мелким серверам, расположенным в местах наибольшей концентрации пользователей. Благодаря приближению сервера к рабочим группам на уровне предприятия уменьшаются время реакции и количество передаваемой по сети информации. Используя такую архитектуру, необходимо разрабатывать сети и программы одновременно.

    Проектировщик сети, если он хочет добиться отличного времени реакции, характерного для технологии коммутации кадров 10/100, может прийти к решению разделить пользователей на сетевые кластеры, каждый со своим собственным "централизованным" сервером (рисунок 8). И хотя кластеризация является популярной технологией в архитектурах с коммутацией кадров, процесс ее проектирования достаточно сложен. Чтобы создать кластеры, необходимо распределить базу данных по трем или четырем серверам, а затем подключить пользователей и серверы к высокоскоростному коммутатору. Для проектирования кластеров необходимо правильно сбалансировать потоки информации между серверами и рабочими группами, а также разработать схемы репликации баз данных. Это требует тесного сотрудничества между разработчиками программного обеспечения и сетей.

    (1х1)

    Рисунок 8.
    Использование кластерной архитектуры.

    FDDI и ATM обслуживают необходимое количество пользователей. Сеть FDDI поддерживает примерно 700 пользователей, но ее время реакции сравнительно велико. FDDI-сеть требует для завершения любой операции по передаче файлов на 20 с больше, чем коммутатор кадров 10/100 или ATM-коммутатор. Однако для указанной компании 20 смогут привести к ежегодным потерям в 327 тыс. дол. Для сравнения, при использовании технологии ATM можно окупить затраты на ее внедрение за год.

    Моделирование окружающей среды

    Цель проекта - перевод программного обеспечения для моделирования окружающей среды с суперкомпьютера на стандартную клиент-серверную систему. Предполагаемая экономия - более 1 млн дол. в год (он затрачивается на эксплуатацию суперкомпьютера). Эта задача поставлена перед специалистами по сетям из консультационной фирмы, занимающейся вопросами защиты окружающей среды. В клиент-серверной системе предполагается запускать программы для моделирования атмосферы, обслуживающие одновременно 180 пользователей. Программы предназначены для анализа загрязнений окружающей среды от дымовых труб, заводских сбросов воды, выхлопов автомобилей и так далее. Программы должны выполнять следующие операции:

    • создание модели среды, установку имитационных параметров;
    • конфигурацию файлов ввода данных о топографии и атмосфере;
    • запуск программы моделирования;
    • загрузку дополнительных файлов;
    • обмен рабочими файлами;
    • запись выходных файлов моделирования;
    • запись имитационных результатов на файл-сервер рабочей группы;
    • просмотр результатов.

    Сеть используется очень напряженно. Необходимо загружать на серверы файлы для математического моделирования объемом до 60 Мбайт. Напряженный поток информации между серверами служит для обмена рабочими файлами (примерно 1000 раз за время обработки одной модели). Компания предполагает, что эта компьютерная система будет выполнять вычисления 99% времени, используя сеть для передачи данных 1% времени. Система должна обеспечить высокую производительность работы. Вычисления выполняются круглосуточно, не менее 360 дней в году.

    На рисунке 9 показана относительная производительность пяти сетевых архитектур и их способность поддерживать приложение моделирования окружающей среды. Координаты по оси Y показывают время, необходимое для выполнения 1000 обменов рабочими файлами между двумя центральными серверами. Этот обмен файлами происходит при любом математическом моделировании. Чтобы перенести эту программу с суперкомпьютера в клиент-серверную среду, необходима очень высокая производительность сети и вычислений.

    Рисунок 9.
    Возможности сетевых архитектур при выполнении программ моделирования окружающей среды.

    В Ethernet-сегменте, даже отделенном от рабочих групп защитным экраном, передается слишком большой объем информации. Сегмент может поддерживать всего трех пользователей. Примерно то же можно сказать и о сети Ethernet и маршрутизируемой фрагментированной магистрали. В обеих архитектурах используются Ethernet-магистрали, и в результате они поддерживают одинаковое количество пользователей. Обе архитектуры также имеют одинаковое время реакции. При выполнении описанных выше операций сервер-сервер не используется маршрутизатор даже в архитектуре маршрутизирумой магистрали, поскольку оба сервера находятся в одном и том же сегменте Ethernet.

    FDDI-сеть в данном случае может поддерживать примерно 110 пользователей, что значительно меньше необходимого числа. Если использовать кластеризацию, которая подробно обсуждалась в предыдущем разделе, то можно добиться требуемых результатов. FDDI-кластеры, однако, будут менее эффективны, чем кластеры с коммутацией кадров 10/100, поскольку каждый кластер потребовал бы для связи кольца FDDI с рабочими группами одного или нескольких маршрутизаторов.

    Время реакции FDDI-сети в операциях сервер-сервер великолепно. Транзакция имеет место в одном FDDI-кольце, поэтому никакой ретрансляции на маршрутизаторе нет. В результате FDDI-кольцо обеспечивает лучшее время реакции, чем решение с коммутацией кадров 10/100 или АТМ. Хотя FDDI отлично подходит для такой чисто магистральной работы, при осуществлении операций клиент-магистраль эта технология работает в четыре раза медленнее, чем коммутация кадров 10/100 или ATM.

    Решение с коммутацией кадров поддерживает более 150 пользователей, и это больше, чем при использовании FDDI. Этому есть объяснение: пока FDDI использует только одно кольцо совместного доступа, коммутатор кадров 10/100 предлагает каждому из магистральных серверов свой коммутируемый 100 Мбит/с интерфейс. Это позволяет коммутатору достаточно быстро перемещать данные с сервера на сервер. Однако лишь немногие разработчики сетей предложили бы использовать коммутатор кадров 10/100 вместо FDDI, хотя коммутация - лучшее решение. Как уже было сказано, коммутация кадров не поддерживает требуемых 180 пользователей. Поэтому остается всего два варианта: либо создавать кластеры из коммутаторов 10/100, либо переходить на ATM.

    Только ATM-архитектура обеспечивает поддержку необходимого числа пользователей. Позволяя создавать коммутируемую сеть, она демонстрирует отличное время реакции и для операций клиент-магистраль, и для операций, полностью происходящих в магистрали.

    Построение сетей

    Исследование различных архитектур и возможностей их применения выявило ряд важных проблем. Дизайнеры сетей, которые используют только интуицию и прошлый опыт, могут оказаться в трудном положении. "Искусство" сетевой разработки должно преобразиться в науку. Если принимать решения без тщательного учета свойств программного обеспечения, которое будет использоваться в сети, то это может привести к плохому исполнению проекта.

    Тот факт, что Ethernet с коммутацией кадров 10/100 поддерживает больше пользователей при моделировании окружающей среды, чем магистральная FDDI-сеть, может вызвать удивление у многих разработчиков сетей. При разработке сети для такого программного обеспечения "интуиция" наверняка привела бы к разработке FDDI-сети - то есть к более дорогостоящему решению. При этом сеть могла бы обслуживаь меньшее число пользователей. При использовании программ групповой обработки изображений сети с коммутацией кадров или ATM могли бы сэкономить компании 300 тыс. дол. в год, обеспечивая лучшее время реакции и большую продуктивность работы команды инженеров.

    В современных условиях для правильной разработки сети и ее обслуживания администраторы должны научиться решать следующие проблемы.

  • Изменение организационной структуры. При выполнении проекта не следует разделять разработчиков программного обеспечения и сетевой архитектуры. Многие организации, внедряющие информационные технологии, имеют различные группы для выполнения сетевых операций и разработки вычислительных систем. Обычно единственным человеком, входящим в обе группы, является директор по информационным системам. В результате такого разделения связь между этими группами осуществляется плохо, а в итоге принимаются неэффективные решения. При разработке сетей и всей системы в целом нужно создавать единую команду из специалистов разного профиля.
  • Оценка экономической выгоды. В стоимость сети должны входить стоимости серверов, рабочих станций, конфигурирования сети, обучения обслуживающего персонала и пользователей. При переходе от мэйнфреймов к миникомпьютерам также нужно учитывать стоимость усиления сети, которая должна обеспечить увеличение потока информации и уменьшение времени реакции, необходимого для распределенных вычислений.
  • Использование новых программ. Необходимо знакомиться с новым программным обеспечением еще на ранней стадии разработки, чтобы можно было своевременно изменить сеть. В одной из компаний, входящих в группу Fortune 100, недавно было обнаружено, что менеджеры этой компании планируют использовать около 60 новых клиент-серверных программ за 18 месяцев, а сетевые администраторы знают только о 12 программах. Правильное планирование избавляет от неприятных сюрпризов.
  • Исследование различных решений. Необходимо оценивать различные архитектуры программ и их возможное влияние на сеть (а также время реакции), прежде чем начинать программирование. Надо оценивать топологии систем, а также проверять, как влияет на работу этих систем приближение серверов к большим скоплениям пользователей и выполнение фоновых модификаций на главной базе данных.
  • Проверка сетей. Важно использовать тесты на ранних стадиях разработки. Для этого можно создать прототип сети, который позволит оценить правильность принятых решений. С помощью такого прототипа можно предусмотреть возможные заторы и определить производительность разных архитектур. Пусть пользователи помогут проектировщикам оценить работу системы. Однако не стоит демонстрировать работу программы на линии T-1, если она будет работать в коммутируемой 56 Кбит/с сети.
  • Выбор протоколов. Чтобы правильно выбрать конфигурацию сети, нужно оценить возможности различных наборов протоколов. Важно определить, как сетевые операции, оптимизирующие работу одной программы или пакета программ, могут повлиять на производительность других.
  • Выбор физического расположения. Выбирая место установки серверов, надо, прежде всего, определить местоположение пользователей. Возможно ли их перемещение? Будут ли их компьютеры подключены к одной подсети? Будут ли эти пользователи иметь доступ к глобальной сети?
  • Вычисление критического времени. Необходимо определить время использования каждой программы и периоды максимальной нагрузки. Важно понять, как черезвычайная ситуация может повлияет на сеть, и определить, нужен ли резерв для непрерывной работы предприятия.
  • Испытание сети. Чтобы понять, какую нагрузку может выдержать сеть, надо ее смоделировать в уже работающей сети, проанализировать причины возникновения замедлений и заторов и определить, как увеличение количества пользователей может повлиять на работу сети.
  • Анализ вариантов. Важно проанализировать различные варианты использования программного обеспечения в сети. Централизация данных часто означает дополнительную нагрузку в центре сети, а распределенные вычисления могут потребовать усиления ЛВС рабочих групп.
  • Прежде чем появились технологии коммутации кадров и ячеек, было отмечено несколько этапов увеличения сетевой производительности. Сегменты Ethernet и Token Ring подключались к маршрутизаторам. Сети Token Ring, для которых требовалась большая производительность, имели пропускную способность кольца до 16 Мбит/с. Затем предприятия развернули FDDI-магистрали для передачи информации между рабочими группами.

    Сегодня в некоторых вычислительных системах коммутаторы Ethernet с 10 Мбит/с портами дополняют или заменяют маршрутизаторы, а коммутаторы кадров 10/100 конкурируют с FDDI. Как показывают приведенные в статье примеры, коммутация кадров в среднем обеспечивает гораздо лучшее время реакции и поддерживает большее количество пользователей по сравнению с маршрутизируемыми сетями и FDDI-магистралью. Коммутаторы можно установить в кластерной конфигурации, что обеспечивает высокоскоростное взаимодействие с серверами или магистралью на уровне предприятия. С помощью коммутации можно создавать более масштабируемые и управляемые сети.

    Архитектура сетей сейчас изменяется, поэтому маршрутизаторы больше не стоят на пути между клиентом и сервером. Большинство из них не было предназначено для поддержки операций клиент-сервер с низким временем задержки и высокой производительностью. Теперь маршрутизаторы возвращаются к своей первоначальной роли - обеспечению связи между разнородными сетями (например, Ethernet и Token Ring) и межсетевой защиты.

    Хотя FDDI по-прежнему остается главной составляющей в больших магистральных сетях, коммутация ячеек в ATM начала вытеснять FDDI как более эффективная магистральная технология. Возможно, к концу десятилетия технология АТМ получит широкое распространение.

    Наконец, технология коммутации кадров и ячеек позволяет изменить соотношение цены и производительности. Ее использование уменьшает расходы на эксплуатацию сети. Часто затраты на создание сетей оцениваются по стоимости на один порт. Раньше, когда обеспечение связи и взаимодействия было главной целью сети, такой способ оценки затрат был оправдан, но теперь он устарел. Сегодня основная задача разработки сетей заключается не в обеспечении связи, а в перемещении больших объемов данных, необходимом для распределенных вычислений. Поэтому новый принцип определения стоимости сети должен отражать ее способность пересылать данные. Стоимость порта не играет роли, так как не позволяет оценить производительность, которую обеспечивает ЛВС. При использовании более современного способа оценки учитываются затраты на переданный мегабит и скорость передачи данных по сети. В технологии коммутации каждый компьютер получает канал с известной скоростью передачи данных. Если оценивать коммутацию в соответствии с новыми принципами, то она является более экономичной, чем традиционные ЛВС совместного доступа. Коммутация обеспечивает высокую производительность, отличное время реакции и позволяет разработчикам сетей делать их более управляемыми - три качества, которые имеют принципиальное значение для современных и будущих сетей.

    Современные организации стремятся внедрять новые сервисы и приложения, но зачастую камнем преткновения становится устаревшая сетевая инфраструктура, неспособная поддерживать инновации. Решить эту проблему призваны технологии, созданные на основе открытых стандартов.

    Сегодня в ИТ прочные позиции завоевал подход, основанный на стандартах, – заказчики почти всегда отдают предпочтения стандартным решениям. С уходом эпохи, когда господствовали мейнфреймы, стандарты завоевали прочные позиции. Они позволяют комбинировать оборудование разных производителей, выбирая «лучшие в своем классе» продукты и оптимизировать стоимость решения. Но в сетевой отрасли не все так однозначно.

    На сетевом рынке до сих пор доминируют закрытые системы, а совместимость решений разных производителей обеспечивается в лучшем случае на уровне интерфейсов. Несмотря на стандартизацию интерфейсов, стеков протоколов, сетевых архитектур, сетевое и коммуникационное оборудование разных вендоров нередко представляет собой проприетарные решения. Например, даже развертывание современных «сетевых фабрик» Brocade Virtual Cluster Switch, Cisco FabricPath или Juniper QFabric предполагает замену имеющихся коммутаторов, а это не дешевый вариант. Что уж говорить про технологии «прошлого века», которые еще работают, но тормозят дальнейшее развитие сетей и функционирующих в них приложений.


    Эволюция сетей. От проприетарных к открытым решениям.

    Проводимые в последние годы исследования показывают, что существует разрыв между предложениями вендоров сетевого оборудования и предпочтениями его покупателей. Например, по данным одного из опросов, 67% заказчиков считают, что проприетарных продуктов по возможности следует избегать, 32% допускают их использование. Лишь 1% респондентов уверены, что проприетарные продукты и средства обеспечивают лучшую интеграцию и совместимость, чем стандартные. То есть в теории большинство заказчиков предпочитает основанные на стандартах решения, но предлагаются в основном проприетарные сетевые продукты.

    На практике же при покупке нового оборудования или расширении сетевой инфраструктуры заказчики нередко выбирают решения того же вендора или то же семейство продуктов. Причины – инерция мышления, желание свести к минимуму риски при обновлении критичных систем. Однако основанные на стандартах продукты намного проще заменить, даже если это продукты разных производителей. К тому же при определенных условиях комбинация систем разных вендоров позволит получить функциональное сетевое решение за разумную цену и снизить совокупную стоимость владения.

    Это не означает, что не стоит покупать проприетарные, фирменные технологии, не описываемые открытым стандартом, а являющиеся уникальной технологией определенного вендора. Именно они обычно реализуют инновационные функции и средства. Использование проприетарных решений и протоколов зачастую позволяет получить лучшие показатели по сравнению с открытыми стандартами, но при выборе подобных технологий, необходимо максимально сокращать (а лучше - исключать) их применение на границах отдельных сегментов или технологических узлов сетевой инфраструктуры, что особенно важно в мультивендорных сетях. Примерами таких сегментов могут служить уровни доступа, агрегации или ядра сети, граница между локальной и глобальной сетями, сегменты, реализующие сетевые с приложения (например, балансировка нагрузки, оптимизация трафика) и т.п.

    Проще говоря, применение проприетарных технологий должно ограничиваться их использованием внутри границ сегментов, реализующих специализированные сетевые функции и/или приложения (своего рода типовые «строительные блоки» сети). В случаях, когда нестандартные фирменные технологии используются в качестве основы всей корпоративной сети или больших сетевых доменов, это увеличивает риск «привязки» заказчика к одному производителю.

    Иерархические и плоские сети

    Цель построения корпоративных сетей передачи данных (КСПД), будь то сеть географически распределенной компании или сеть ЦОД, – обеспечение работы бизнес-приложений. КСПД - один из важнейших инструментов развития бизнеса. В компании с территориально-распределенной структурой бизнес нередко зависит от надежности и гибкости совместной работы ее подразделений. В основе построения КСПД лежит принцип разделения сети на «строительные блоки» – каждый характеризуется свойственными ему функциями и особенностями реализации. Принятые в отрасли стандарты позволяют использовать в качестве таких строительных блоков сетевое оборудование разных вендоров. Частные (проприетарные) протоколы ограничивают свободу выбора для заказчиков, что в результате приводит к ограничению гибкости бизнеса и повышает издержки. Применяя стандартизированные решения, заказчики могут выбрать лучший продукт в интересующей их области и интегрировать его с другими продуктами, используя открытые стандартные протоколы.

    Современные крупные сети очень сложны, поскольку определяются множеством протоколов, конфигурациями и технологиями. С помощью иерархии можно упорядочить все компоненты в легко анализируемой модели. Иерархическая модель помогает в разработке, внедрении и обслуживании масштабируемых, надежных и эффективных в стоимостном выражении объединенных сетей.


    Трехуровневая архитектура корпоративной сети.

    Традиционная архитектура корпоративной сети включает в себя три уровня: уровень доступа, агрегирования/распределения и ядра. На каждом из них выполняются специфические сетевые функции.

    Уровень ядра – основа всей сети. Для достижения максимальной производительности функции маршрутизации и политики управления трафиком выносятся на уровень агрегирования/распределения. Именно он отвечает за надлежащую маршрутизацию пакетов, политики трафика. Задачей уровня распределения является агрегирование/объединение всех коммутаторов уровня доступа в единую сеть. Это позволяет существенно уменьшить количество соединений. Как правило, именно к коммутаторам распределения подключаются самые важные сервисы сети, другие ее модули. Уровень доступа служит для подключения клиентов к сети. По аналогичной схеме строились и сети ЦОД.


    Устаревшая архитектура трехуровневой сети в центре обработки данных.

    Традиционные трехуровневые архитектуры ориентированы на клиент-серверную парадигму сетевого трафика. С дальнейшим развитием технологий виртуализации и интеграции приложений возрастает поток сетевого трафика между серверами. Аналитики говорят () о смене парадигмы сетевого трафика с направления «север-юг», на «восток-запад», т.е. на существенное преобладание трафика между серверами в отличие от обмена между сервером и клиентами.

    То есть трафик между серверами проходит через уровни доступа, агрегации, ядра сети и обратно неоптимальным образом, за счет необоснованного увеличения общей длины сетевого сегмента и количества уровней обработки пакетов сетевыми устройствами. Иерархические сети недостаточно приспособлены для обмена данными между серверами, не вполне отвечают требованиям современных ЦОД с высокой плотностью серверных ферм и интенсивным межсерверным трафиком. В такой сети обычно используются традиционные протоколы защиты от петель, резервирования устройств и агрегированных соединений. Ее особенности: существенные задержки, медленная сходимость, статичность, ограниченная масштабируемость и т.п. Вместо традиционной древовидной топологии сети необходимо использовать более эффективные топологии (CLOS/ Leaf-Spine/ Collapsed), позволяющие уменьшить количество уровней и оптимизировать пути передачи пакетов.


    HP упрощает архитектуру сети с трёхуровневой (характерной для традиционных сетевых архитектур Cisco) до двух- или одноуровневой.

    Сейчас тенденция такова, что все больше заказчиков при построении своих сетей ориентируются на построение сетей передачи данных второго уровня (L2) с плоской топологией. В сетях ЦОД переход к ней стимулируется увеличением числа потоков «сервер – сервер» и «сервер – система хранения». Такой подход упрощает планирование сети и внедрение, а также снижает операционные расходы и общую стоимость вложений, делает сеть более производительной.

    В ЦОД плоская сеть (уровня L2) лучше отвечает потребностям виртуализации приложений, позволяя эффективно перемещать виртуальные машины между физическими хостами. Еще одно преимущество, которое реализуется при наличии эффективных технологий кластеризации/стекирования – отсутствие необходимости в протоколах STP/RSTP/MSTP. Такая архитектура в сочетании с виртуальными коммутаторами обеспечивает защиту от петель без использования STP, а в случае сбоев сеть сходится на порядок быстрее, чем при использовании традиционных протоколов семейства STP.

    Архитектура сети современных ЦОД должна обеспечивать эффективную поддержку передачи больших объемов динамического трафика. Динамический трафик обусловлен существенным ростом количества виртуальных машин и уровня интеграции приложений. Здесь необходимо отметить все возрастающую роль различных технологий виртуализации информационно-технологической (ИТ) инфраструктуры на базе концепции программно-определяемых сетей (SDN).

    Концепция SDN в настоящее время широко распространяется не только на уровень сетевой инфраструктуры отдельных площадок, но и на уровни вычислительных ресурсов и систем хранения как в рамках отдельных, так и географически-распределенных ЦОД (примерами последних являются HP Virtual Cloud Networking – VCN и HP Distributed Cloud Networking – DCN).

    Ключевой особенностью концепции SDN является объединение физических и виртуальных сетевых ресурсов и их функционала в рамках единой виртуальной сети. При этом важно понимать, что несмотря на то, что решения сетевой виртуализации (overlay) могут работать поверх любой сети, производительность/доступность приложений и сервисов в значительной степени зависят от работоспособности и параметров физической инфраструктуры (underlay). Таким образом, объединение преимуществ оптимизированной физической и адаптивной виртуальной сетевых архитектур, позволяет строить унифицированные сетевые инфраструктуры для эффективной передачи больших потоков динамического трафика по запросам приложений.

    Архитектура HP FlexNetwork

    Для построения плоских сетей вендоры разрабатывают соответствующее оборудование, технологии и сервисы. В числе примеров – Cisco Nexus, Juniper QFabric, HP FlexFabric. В основе решения HP – открытая и стандартизированная архитектура HP FlexNetwork.

    HP FlexNetwork включает в себя четыре взаимосвязанных компонента: FlexFabric, FlexCampus, FlexBranch и FlexManagement. Решения HP FlexFabric, HP FlexCampus и HP FlexBranch оптимизируют сетевые архитектуры, соответственно центров обработки данных, кампусов и филиалов предприятий, позволяя по мере роста поэтапно мигрировать от традиционных иерархических инфраструктур к унифицированным виртуальным, высокопроизводительным, конвергентным сетям или сразу строить такие сети на основе эталонных архитектур, рекомендованных НР.

    HP FlexManagement предоставляет возможности комплексного мониторинга, автоматизации развертывания/настройки/контроля мультивендорных сетей, унифицированного управления виртуальными и физическими сетями с единой консоли, что ускоряет развертывание сервисов, упрощает управление, повышает доступность сети, избавляет от сложностей, связанных с применением множества систем администрирования. Причем система может управлять устройствами десятков других производителей сетевого оборудования.


    HP FlexFabric поддерживает коммутацию в сетях до 100GbE на уровне ядра и до 40GbE на уровне доступа, использует технологию HP Virtual Connect. Внедряя архитектуру FlexFabric, организации могут поэтапно перейти от трехуровневых сетей на оптимизированные двух- и одноуровневые сети.

    Заказчики могут поэтапно переходить от проприетарных устаревших сетей к архитектуре HP FlexNetwork с помощью HP Technology Services. HP предлагает услуги по миграции от проприетарных сетевых протоколов, например Cisco EIGRP (хотя в Cisco этот протокол называют «открытым стандартом»), к действительно стандартным протоколам маршрутизации OSPF v2 и v3. Кроме того, HP предлагает сервисы администрирования FlexManagement и набор услуг, касающихся жизненного цикла каждого модульного «строительного блока» HP FlexNetwork, включая планирование, проектирование, внедрение и сопровождение корпоративных сетей.

    HP продолжает улучшать возможности своего оборудования, как на уровне аппаратных платформ, так и на основе концепции Software Defined Network (SDN), внедряя различные протоколы динамического управления коммутаторами и маршрутизаторами (OpenFlow, NETCONF, OVSDB). Для построения масштабируемых Ethernet фабрик в ряде моделей сетевых устройств HP внедрены такие технологии как TRILL, SPB, VXLAN (перечень устройств с поддержкой этих протоколов постоянно расширяется). В дополнение к стандартным протоколам категории DCB (в частности VPLS), HP разработаны и активно развиваются фирменные технологии эффективного объединения географически распределенных ЦОД в единую L2 сеть. Например, текущая реализация протокола HP EVI (Ethernet Virtual Interconnect) позволяет подобным образом объединить до 64-площадок ЦОД. Совместное же использование HP EVI и протокола виртуализации устройств HP MDC (Multitenant Device Context) предоставляет дополнительные возможности по расширению, повышение надежности и безопасности распределенных виртуализированных L2 сетей.

    Выводы

    В каждом конкретном случае выбор архитектуры сети зависит от множества факторов – технических требований к КСПД или ЦОД, пожеланий конечных пользователей, планов развития инфраструктуры, опыта, компетенции и т.д. Что касается проприетарных и стандартных решений, то первые подчас позволяют справиться с задачами, для которых не подходят стандартные решения. Однако на границе сегментов сети, построенной на оборудовании разных вендоров, возможности их использования крайне ограничены.

    Масштабное применение проприетарных протоколов в качестве основы для корпоративной сети, может серьезно ограничить свободу выбора, что в конечно счете влияет на динамичность бизнеса и увеличит его издержки.

    Открытые, основанные на стандартах решения помогают компаниям переходить с унаследованных архитектур к современным гибким сетевым архитектурам, отвечающие таким актуальным задачам как облачные вычисления, миграция виртуальных машин, унифицированные коммуникации и доставка видео, высокопроизводительный мобильный доступ. Организации могут выбирать лучшие в своем классе решения, отвечающие потребностям бизнеса. Использование открытых, стандартных реализаций протоколов снижает риски и стоимость изменений сетевой инфраструктуры. Кроме того, открытые сети, с объединенными физическими и виртуальными сетевыми ресурсами и их функционалом, упрощают перенос приложений в частное и публичное облако.

    Наши предыдущие публикации:

    » Внедрение MSA в виртуализированном окружении предприятия
    » Добавить метки

    Под сетевой архитектурой понимают набор стандартов, топологий и протоколов низкого уровня, необходимых для создания работоспособной сети.

    За многие годы развития сетевых технологий было разработано много различных архитектур. Рассмотрим их.

    Token Ring .

    Технология разработана компанией IBM в 1970-х годах, а затем была стандартизована IEEE в «Проекте 802» как спецификация 802.5. Она имеет следующие характеристики:

    · физическая топология – «звезда»;

    · логическая топология – «кольцо»

    · скорость передачи данных – 4 или 16 Мбит/с;

    · среда передачи – витая пара (используется 2 пары);

    UTP – 150 м (для 4 Мбит/с)

    STP – 300 м (для 4 Мбит/с)

    или 100 (для 16 Мбит/с);

    · максимальная длина сегмента с репитерами:

    UTP – 365 м

    STP – 730 м

    * максимальное количество компьютеров на сегмент – 72 или 260 (в зависимости от типа кабеля)

    Для объединения компьютеров в сетях Token Ring используются концентраторы MSAU, неэкранированная или экранированная витая пара (возможно и применение оптоволокна).

    К преимуществам архитектуры Token Ring можно отнести высокую дальность передачи при использовании повторителей (до 730 м). Можно использовать в автоматизированных системах в реальном времени.

    Недостатки архитектуры – довольно высокая стоимость, низкая совместимость оборудования.

    Сетевая среда ARCNet была разработана корпорацией Datapoint в 1977 году. Стандартом она не стала, но соответствует спецификации IEEE 802.4. Это простая, гибкая и недорогая архитектура для небольших сетей (до 256 компьютеров) характеризуется следующими параметрами:

    · физическая топология – «шина» или «звезда»;

    · логическая топология – «шина»

    · метод доступа – передача маркера;

    · скорость передачи данных – 2,5 или 20 Мбит/с;

    · среда передачи – витая пара или коаксиальный кабель;

    · максимальный размер кадра – 516 байт;

    · среда передачи – витая пара или коаксиальный кабель

    · максимальная длина сегмента:

    Для витой пары – 244 м (для любой топологии)

    Для коаксиального кабеля – 305 м или 610 м (для топологии «шина» или «звезда», соответственно).

    Для соединения компьютеров используются концентраторы. Основной тип кабеля – коаксиальный типа RG-62. Поддерживается также витая пара и оптоволокно. Для коаксиального кабеля используется BNC-коннекторы, для витой пары – коннекторы RJ-45. Основное достоинство не большая стоимость оборудования и сравнительно большая дальность.

    AppleTalk .

    Фирменная сетевая среда, предложенная компанией Apple в 19883 году и встроенная в компьютеры Macintosh. Она включает в себя целый набор протоколов, соответствующих модели OSI. На уровне сетевой архитектуры используется протокол LokalTalkФ, имеющий следующие характеристики:



    · топология – «шина» или «дерево»;

    · метод доступа – CSMA/CA;

    · скорость передачи данных – 230,4 Кбит/с;

    · среда передачи данных – экранированная витая пара;

    · максимальная длина сети – 300 м;

    · максимальное число компьютеров – 32.

    Очень низкая пропускная способность привела к тому, что многие производители стали предлагать адаптеры расширения, позволяющие AppleTalk работать с сетевыми средами большой пропускной способности – EtherTalk, TokenTalk, FDDITalk. В локальных сетях, построенных на базе IBM-совместимых компьютеров сетевая среда AppleTalk практически не встречается.

    100VG-AnyLAN .

    Архитектура 100VG-AnyLAN была разработана в 90-х годах компаниями AT&T и Hewlett-Packard для объединения сетей Ethernet b Token Ring. В 1995 году эта архитектура получила статус стандарта IEEE 802.12. Она имеет следующие параметры:

    · топология – «звезда»;

    · метод доступа – по приоритету запроса;

    · скорость передачи данных – 100 Мбит/с;

    · среда передачи – витая пара категории 3,4 или 5 (используются все 4 пары);

    · максимальная длина сегмента (для оборудования HP) – 225 м.

    Из-за сложности и высокой стоимости оборудования в настоящее время практически не применяется.

    Архитектура для домашних сетей.

    Home PNA .

    В 1966 году целый ряд компаний объединились для создания стандарта, позволяющего строить домашние сети на основе обычной телефонной проводки. Результатом этой работы стало появление в 1998 году архитектуры Home PNA 1.0, а затем Home PNA 2.0, Home PNA3.0 . Их краткие характеристики:

    Таблица № 1. Сравнение стандартов Home PNA.

    Во всех указанных стандартах используется самый популярный метод доступа к среде – CSMA/CD; в качестве среды – телефонный кабель; в качестве разъемов – телефонные коннекторы RJ-11. Устройства Home PNA могут работать и с витой парой и с коаксиальным кабелем, причем, дальность передачи существенной возрастает.

    Следует не забывать, что телефонные линии в России не отвечают стандартым развитых стран как по качеству, так и по охвату. Цены на адаптеры довольно высоки. Тем не менее, данную архитектуру можно рассматривать в качестве альтернативы для беспроводных сетей в офисных зданиях и жилых домах.

    Домашние сети на базе электропроводки.

    Эта технология появилась недавно и получила название Home PLC. Оборудование в продаже имеется, но популярности пока не имеет.

    Параметры сетей HomePlug:

    · топология – «шина»;

    · скорость передачи данных – до 85 Мбит/c$

    · метод доступа – CSMA/CD;

    · среда передачи – электрическая проводка;

    Недостатки сетей Home PLC –незащищенность от перехвата, требующая обязательного применения шифрования и большая чувствительность к электрическим помехам. К тому же такая технология пока еще дорога.

    Технологии, используемые в современных локальных сетях.

    Ethernet .

    Архитектура Ethernet объединяет целый набор стандартов, имеющих как общие черты, так и отличные. Первоначально она была создана фирмой Xerox в середине 70-х годов и представляла собой систему передачи со скоростью 2,93 Мбит/с. После доработки с участием компаний DEC и Intel архитектура Ethernet послужила основой принятого в 1985 году стандарта IEEE 802.3, определившая для нее следующие параметры:

    · топология – «шина»;

    · метод доступа – CSMA/CD;

    · скорость передачи – 10 Мбит/с;

    · среда передачи – коаксиальный кабель;

    · применение терминаторов – обязательно;

    · максимальная длина сегмента сети – до 500 м;

    · максимальная длина сети – до 2,5 км;

    · максимальное количество компьютеров в сегменте – 100;

    · максимальное количество компьютеров с сети – 1024.

    В исходной версии предусматривалось применение коаксиального кабеля двух типов «толстого» и «тонкого» (стандарты 10Base-5 и 10Base-2 соответственно).

    В начале 90-х годов появилась спецификация для построения сетей Ethernet c использованием витой пары (10Base-T) и оптоволокна (10Base-FL). В 1995 году был опубликован стандарт IEEE 802.3u, обеспечивающий передачу на скоростях до 100 Мбит/с. В 1998 году появился стандарт IEEE 802.3z и 802.3ab, а в 2002 году IEEE802.3 ae. Сравнение стандартов приведены в таблице № 12.2.

    Таблица № 12.2. Характеристики различных стандартов Ethernet.

    Реализация Скорость Мбит/c Топология Среда передачи Максимальная длина кабеля, м
    Ethernet
    10Base-5 «шина» Толстый коаксиальный кабель
    10Base-2 «шина» Тонкий коаксиальный кабель 185; реально до 300
    10Base-T «звезда» Витая пара
    10Base-FL «звезда» оптоволокно 500 (станция-концентратор); 200 (между концертраторами)
    Fast Ethernet
    100Base-TX «звезда» Витая пара категории 5 (используется 2 пары)
    100Base-T4 «звезда» Витая пара категории 3,4, 5 (используется четыре пары)
    100Base-FX «звезда» Многомодовое или одномодовое оптоволокно 2000 (многомодовый) 15000 (одномодовый) реально – до 40 км
    Gigabit Ethernet
    1000Dase-T «звезда» Витая пара категории 5 или выше
    1000Dase-CX «звезда» Специальный кабель типа STR
    1000Dase-SX «звезда» оптоволокно 250-550 (многомодовый), в зависимости от типа
    1000Dase-LX «звезда» оптоволокно 550 (многомодовый); 5000 (одномодовый); реально – до 80 км
    10 Gigabit Ethernet
    10GDase-x «звезда» оптоволокно 300-40000 (в зависимости от типа кабеля и длины волны лазера)

    Недостаток сетей Ethernet связан с использованием в них метода доступа к среде CSMA/CD (множественный доступ с контролем несущей и обнаружением столкновений). При увеличении количества компьютеров растет число столкновений, что снижает пропускную способность сети и увеличивает время доставки кадров. Поэтому рекомендуемой нагрузкой сети Ethernet считается уровень в 30-40% от общей полосы пропускания. Этот недостаток легко устраняется путем замены концентраторов мостами и коммутаторами, умеющими изолировать передачу данных между двумя компьютерами в сети от других.

    Преимуществ у сети Ethernet очень много. Сама технология проста в реализации. Стоимость оборудования не высока. Можно использовать практически любые виды кабеля. Поэтому в настоящее время данная архитектура сетей можно сказать, что она является господствующей.

    Беспроводные сети

    Wi-Fi – популярная в мире и быстро развивающаяся в России технология, обеспечивающая беспроводное подключение мобильных пользователей к локальной сети и Интернету (рис.12.5).


    В стандарте 802.11 предусматривается использование только полудуплексные приемопередатчики, которые не могут одновременно передавать и принимать информацию. Поэтому в качестве метода доступа к среде во всех стандартах используется метод CSMA/CA (с предотвращением коллизий), позволяющий избегать столкновений.

    Основным недостатком сетей Wi-Fi является малая дальность передачи данных, не превышающая для большинства устройств 150 м (максимум 300 м) на открытом пространстве и всего несколько метров в помещении.

    Данную проблему решает архитектура WiMAX, разрабатываемая в рамках рабочей группы IEEE 802.16. Реализация этой технологии, также использующей радиосигналы в качестве среды передачи, позволит предоставить пользователям скоростной беспроводной доступ на расстояниях до нескольких десятков км (рис. 10.6.).


    Рис. 12.6. Беспроводное подключение мобильных пользователей к локальной сети и Интернету (до десятков км).

    Новая технология Bluetooth использует радиосигнал 2,4 Ггц. Она имеет низкое энергопотребление, что позволяет использовать ее в переносных устройствах – ноутбуках, мобильных телефонах (рис.12.7.)



    Рис. 12.7. Беспроводное подключение мобильных пользователей к локальной сети и Интернету (до десяти метров).

    Bluetooth практически не требует настройки. У нее низкие показатели по дальности (до 10 метров) при 400-700 Кбит/с.

    Специализация распределенных вычислений:

    Сети и протоколы;

    Сетевые мультимедиасистемы;

    Распределенные вычисления;

    ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

    Государственное образовательное учреждение

    Среднего профессионального образования

    «Орский индустриальный колледж»

    ОБЗОРНЫЕ ЛЕКЦИИ

    И МЕТОДИЧЕСКИЕ УКАЗАНИЯ

    ПО ВЫПОЛНЕНИЮ ЛАБОРАТОРНЫХ РАБОТ

    КОМПЬЮТЕРНЫЕ СЕТИ И СЕТЕВОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

    (наименование дисциплины)

    Для специальности 080802 Прикладная информатика (по отраслям)

    базовый

    (уровень СПО)


    Заместитель директора по учебной работе

    В области информационных технологий обучения

    ГОУ СПО «Орский индустриальный колледж» Черников Е.В.

    Преподаватель ГОУ СПО «Орский индустриальный колледж» Катугин А.П.


    Введение

    Курс представляет собой введение в сетевую тематику и дает базовые знания по организации и функционированию сетей. В лекциях даны общие понятия компьютерных сетей, их структуры, сетевых компонентов в простой и доступной форме. Здесь приведены виды топологии, используемые для физического соединения компьютеров в сети, методы доступа к каналу связи, физические среды передачи данных. Передача данных в сети рассматривается на базе эталонной базовой модели, разработанной Международной организацией по стандартам взаимодействия открытых сетей. Описываются правила и процедуры передачи данных между информационными системами. Приводятся типы сетевого оборудования, их назначение и принципы работы. Описывается сетевое программное обеспечение, используемое для организации сетей. Изучаются наиболее популярные сетевые операционные системы, их достоинства и недостатки. Рассматриваются принципы межсетевого взаимодействия. Приводятся основные понятия из области сетевой безопасности.

    Для подготовки курса проработан большой объем информации, расположенной на информационно-поисковых серверах Internet, и использовалась литература, приведенная в списке.

    Правила выполнения лабораторных работ

    Лабораторные работы выполняются каждым студентом самостоятельно в полном объеме и согласно содержанию методических указаний.

    Перед выполнением работы студент должен отчитаться перед преподавателем за выполнение предыдущей работы (сдать отчет).

    Студент должен на уровне понимания и воспроизведения предварительно усвоить необходимую для выполнения лабораторных работ теоретическую и практическую информацию.

    Студент, получивший положительную оценку и сдавший отчет по предыдущей лабораторной работе, допускается к выполнению следующей работы.

    Студент, пропустивший лабораторную работу по уважительной либо неуважительной причине, закрывает задолженность в процессе выполнения последующих практических работ.


    ОБЗОРНАЯ ЛЕКЦИЯ №1

    Основные определения и термины. Архитектура сетей.

    Сеть – это совокупность объектов, образуемых устройствами передачи и обработки данных. Международная организация по стандартизации определила вычислительную сеть как последовательную бит-ориентированную передачу информации между связанными друг с другом независимыми устройствами.

    Сети обычно находится в частном ведении пользователя и занимают некоторую территорию и по территориальному признаку разделяются на:

    Локальные вычислительные сети (ЛВС) или Local Area Network (LAN), расположенные в одном или нескольких близко расположенных зданиях. ЛВС обычно размещаются в рамках какой-либо организации (корпорации, учреждения), поэтому их называют корпоративными.

    Распределенные компьютерные сети, глобальные или Wide Area Network (WAN), расположенные в разных зданиях, городах и странах, которые бывают территориальными, смешанными и глобальными. В зависимости от этого глобальные сети бывают четырех основных видов: городские, региональные, национальные и транснациональные. В качестве примеров распределенных сетей очень большого масштаба можно назвать: Internet, EUNET, Relcom, FIDO.

    В состав сети в общем случае включается следующие элементы:

    Сетевые компьютеры (оснащенные сетевым адаптером);

    Каналы связи (кабельные, спутниковые, телефонные, цифровые, волоконно-оптические, радиоканалы и др.);

    Различного рода преобразователи сигналов;

    Сетевое оборудование.

    Различают два понятия сети: коммуникационная сеть и информационная сеть (рис. 1.1).

    Коммуникационная сеть предназначена для передачи данных, также она выполняет задачи, связанные с преобразованием данных. Коммуникационные сети различаются по типу используемых физических средств соединения.

    Информационная сеть предназначена для хранения информации и состоит из информационных систем . На базе коммуникационной сети может быть построена группа информационных сетей:

    Под информационной системой следует понимать систему, которая является поставщиком или потребителем информации.

    Компьютерная сеть состоит из информационных систем и каналов связи .

    Под информационной системой следует понимать объект, способный осуществлять хранение, обработку или передачу информация. В состав информационной системы входят: компьютеры, программы, пользователи и другие составляющие, предназначенные для процесса обработки и передачи данных. В дальнейшем информационная система, предназначенная для решения задач пользователя, будет называться – рабочая станция (client) . Рабочая станция в сети отличается от обычного персонального компьютера (ПК) наличием сетевой карты (сетевого адаптера ), канала для передачи данных и сетевого программного обеспечения.

    Рис. 0.1 Информационные и коммуникационные сети

    Под каналом связи следует понимать путь или средство, по которому передаются сигналы. Средство передачи сигналов называют абонентским, или физическим, каналом .

    Каналы связи (data link) создаются по линиям связи при помощи сетевого оборудования и физических средств связи. Физические средства связи построены на основе витых пар, коаксиальных кабелей, оптических каналов или эфира. Между взаимодействующими информационными системами через физические каналы коммуникационной сети и узлы коммутации устанавливаются логические каналы.

    Логический канал – это путь для передачи данных от одной системы к другой. Логический канал прокладывается по маршруту в одном или нескольких физических каналах. Логический канал можно охарактеризовать, как маршрут, проложенный через физические каналы и узлы коммутации.

    Информация в сети передается блоками данных по процедурам обмена между объектами. Эти процедуры называют протоколами передачи данных.

    Протокол – это совокупность правил, устанавливающих формат и процедуры обмена информацией между двумя или несколькими устройствами.

    Загрузка сети характеризуется параметром, называемым трафиком . Трафик (traffic) – это поток сообщений в сети передачи данных. Под ним понимают количественное измерение в выбранных точках сети числа проходящих блоков данных и их длины, выраженное в битах в секунду.

    Существенное влияние на характеристику сети оказывает метод доступа . Метод доступа – это способ определения того, какая из рабочих станций сможет следующей использовать канал связи и как управлять доступом к каналу связи (кабелю).

    В сети все рабочие станции физически соединены между собою каналами связи по определенной структуре, называемой топологией . Топология – это описание физических соединений в сети, указывающее какие рабочие станции могут связываться между собой. Тип топологии определяет производительность, работоспособность и надежность эксплуатации рабочих станций, а также время обращения к файловому серверу. В зависимости от топологии сети используется тот или иной метод доступа.

    Состав основных элементов в сети зависит от ее архитектуры. Архитектура – это концепция, определяющая взаимосвязь, структуру и функции взаимодействия рабочих станций в сети. Она предусматривает логическую, функциональную и физическую организацию технических и программных средств сети. Архитектура определяет принципы построения и функционирования аппаратного и программного обеспечения элементов сети.

    В основном выделяют три вида архитектур: архитектура терминал – главный компьютер , архитектура клиент – сервер и одноранговая архитектура.

    Современные сети можно классифицировать по различным признакам: по удаленности компьютеров, топологии, назначению, перечню предоставляемых услуг, принципам управления (централизованные и децентрализованные), методам коммутации, методам доступа, видам среды передачи, скоростям передачи данных и т. д. Все эти понятия будут рассмотрены более подробно при дальнейшем изучении курса.

    Архитектура сети определяет основные элементы сети, характеризует ее общую логическую организацию, техническое обеспечение, программное обеспечение, описывает методы кодирования. Архитектура также определяет принципы функционирования и интерфейс пользователя.

    В данном курсе будет рассмотрено три вида архитектур:

    Архитектура терминал – главный компьютер;

    Одноранговая архитектура;

    Архитектура клиент – сервер.

    Архитектура терминал – главный компьютер

    Архитектура терминал – главный компьютер (terminal – host computer architecture) – это концепция информационной сети, в которой вся обработка данных осуществляется одним или группой главных компьютеров.

    Рис. 0.2 Архитектура терминал – главный компьютер

    Рассматриваемая архитектура предполагает два типа оборудования:

    Главный компьютер, где осуществляется управление сетью, хранение и обработка данных.

    Терминалы, предназначенные для передачи главному компьютеру команд на организацию сеансов и выполнения заданий, ввода данных для выполнения заданий и получения результатов.

    Классический пример архитектуры сети с главными компьютерами – системная сетевая архитектура (System Network Architecture – SNA).

    Одноранговая архитектура

    Одноранговая архитектура (peer-to-peer architecture) – это концепция информационной сети, в которой ее ресурсы рассредоточены по всем системам. Данная архитектура характеризуется тем, что в ней все системы равноправны.

    К одноранговым сетям относятся малые сети, где любая рабочая станция может выполнять одновременно функции файлового сервера и рабочей станции. В одноранговых ЛВС дисковое пространство и файлы на любом компьютере могут быть общими. Чтобы ресурс стал общим, его необходимо отдать в общее пользование, используя службы удаленного доступа сетевых одноранговых операционных систем. В зависимости от того, как будет установлена защита данных, другие пользователи смогут пользоваться файлами сразу же после их создания. Одноранговые ЛВС достаточно хороши только для небольших рабочих групп.

    Рис. 0.3 Одноранговая архитектура

    Одноранговые ЛВС являются наиболее легким и дешевым типом сетей для установки. Они на компьютере требуют, кроме сетевой карты и сетевого носителя, только операционной системы Windows 95 или Windows for Workgroups. При соединении компьютеров, пользователи могут предоставлять ресурсы и информацию в совместное пользование.

    Одноранговые сети имеют следующие преимущества:

    Они легки в установке и настройке;

    Отдельные ПК не зависят от выделенного сервера;

    Пользователи в состоянии контролировать свои ресурсы;

    Малая стоимость и легкая эксплуатация;

    Минимум оборудования и программного обеспечения;

    Нет необходимости в администраторе;

    Хорошо подходят для сетей с количеством пользователей, не превышающим десяти.

    Проблемой одноранговой архитектуры является ситуация, когда компьютеры отключаются от сети. В этих случаях из сети исчезают виды сервиса , которые они предоставляли. Сетевую безопасность одновременно можно применить только к одному ресурсу, и пользователь должен помнить столько паролей, сколько сетевых ресурсов. При получении доступа к разделяемому ресурсу ощущается падение производительности компьютера. Существенным недостатком одноранговых сетей является отсутствие централизованного администрирования.

    Использование одноранговой архитектуры не исключает применения в той же сети также архитектуры «терминал – главный компьютер» или архитектуры «клиент – сервер».

    Архитектура клиент – сервер

    Архитектура клиент – сервер (client-server architecture) – это концепция информационной сети, в которой основная часть ее ресурсов сосредоточена в серверах, обслуживающих своих клиентов (рис. 1.4). Рассматриваемая архитектура определяет два типа компонентов: серверы и клиенты .

    Сервер - это объект, предоставляющий сервис другим объектам сети по их запросам. Сервис – это процесс обслуживания клиентов.

    Рис. 0.4 Архитектура клиент – сервер

    Сервер работает по заданиям клиентов и управляет выполнением их заданий. После выполнения каждого задания сервер посылает полученные результаты клиенту, пославшему это задание.

    Сервисная функция в архитектуре клиент – сервер описывается комплексом прикладных программ, в соответствии с которым выполняются разнообразные прикладные процессы.

    Процесс, который вызывает сервисную функцию с помощью определенных операций, называется клиентом . Им может быть программа или пользователь. На рис. 1.5 приведен перечень сервисов в архитектуре клиент – сервер.

    Клиенты – это рабочие станции, которые используют ресурсы сервера и предоставляют удобные интерфейсы пользователя . Интерфейсы пользователя это процедуры взаимодействия пользователя с системой или сетью.

    Клиент является инициатором и использует электронную почту или другие сервисы сервера. В этом процессе клиент запрашивает вид обслуживания, устанавливает сеанс, получает нужные ему результаты и сообщает об окончании работы.

    Рис. 0.5 Модель клиент-сервер

    В сетях с выделенным файловым сервером на выделенном автономном ПК устанавливается серверная сетевая операционная система. Этот ПК становится сервером. Программное обеспечение (ПО ), установленное на рабочей станции, позволяет ей обмениваться данными с сервером. Наиболее распространенные сетевые операционная системы:

    NetWare фирмы Novel;

    Windows NT фирмы Microsoft;

    UNIX фирмы AT&T;

    Помимо сетевой операционной системы необходимы сетевые прикладные программы, реализующие преимущества, предоставляемые сетью.

    Сети на базе серверовимеют лучшие характеристики и повышенную надежность. Сервервладеет главными ресурсами сети,к которым обращаются остальные рабочие станции.

    В современной клиент – серверной архитектуре выделяется четыре группы объектов: клиенты, серверы, данные и сетевые службы. Клиенты располагаются в системах на рабочих местах пользователей. Данные в основном хранятся в серверах. Сетевые службы являются совместно используемыми серверами и данными. Кроме того службы управляют процедурами обработки данных.

    Сети клиент – серверной архитектуры имеют следующие преимущества:

    Позволяют организовывать сети с большим количеством рабочих станций;

    Обеспечивают централизованное управление учетными записями пользователей, безопасностью и доступом, что упрощает сетевое администрирование;

    Эффективный доступ к сетевым ресурсам;

    Пользователю нужен один пароль для входа в сеть и для получения доступа ко всем ресурсам, на которые распространяются права пользователя.

    Наряду с преимуществами сети клиент – серверной архитектуры имеют и ряд недостатков:

    Неисправность сервера может сделать сеть неработоспособной, как минимум потерю сетевых ресурсов;

    Требуют квалифицированного персонала для администрирования;

    Имеют более высокую стоимость сетей и сетевого оборудования.

    Выбор архитектуры сети

    Выбор архитектуры сети зависит от назначения сети, количества рабочих станций и от выполняемых на ней действий.

    Следует выбрать одноранговую сеть, если:

    Количество пользователей не превышает десяти;

    Все машины находятся близко друг от друга;

    Имеют место небольшие финансовые возможности;

    Нет необходимости в специализированном сервере, таком как сервер БД, факс-сервер или какой-либо другой;

    Нет возможности или необходимости в централизованном администрировании.

    Следует выбрать клиент серверную сеть, если:

    Количество пользователей превышает десяти;

    Требуется централизованное управление, безопасность, управление ресурсами или резервное копирование;

    Необходим специализированный сервер;

    Нужен доступ к глобальной сети;

    Требуется разделять ресурсы на уровне пользователей.

    ОБЗОРНАЯ ЛЕКЦИЯ №2

    Семиуровневая модель OSI.

    Для единого представления данных в сетях с неоднородными устройствами и программным обеспечением международная организация по стандартам ISO (International Standardization Organization) разработала базовую модель связи открытых систем OSI (Open System Interconnection). Эта модель описывает правила и процедуры передачи данных в различных сетевых средах при организации сеанса связи. Основными элементами модели являются уровни, прикладные процессы и физические средства соединения. На рис. 2.1 представлена структура базовой модели. Каждый уровень моделиOSI выполняет определенную задачу в процессе передачи данных по сети. Базовая модель является основой для разработки сетевых протоколов. OSI разделяет коммуникационные функции в сети на семь уровней, каждый из которых обслуживает различные части процесса области взаимодействия открытых систем.

    Рис. 0.2 Модель OSI

    Модель OSI описывает только системные средства взаимодействия, не касаясь приложений конечных пользователей. Приложения реализуют свои собственные протоколы взаимодействия, обращаясь к системным средствам. Если приложение может взять на себя функции некоторых верхних уровней модели OSI, то для обмена данными оно обращается напрямую к системным средствам, выполняющим функции оставшихся нижних уровней модели OSI.

    Модель OSI можно разделить на две различных модели, как показано на рис.2.2:

    Горизонтальную модель на базе протоколов, обеспечивающую механизм взаимодействия программ и процессов на различных машинах;

    Вертикальную модель на основе услуг, обеспечиваемых соседними уровнями друг другу на одной машине.

    Рис. 0.2 Схема взаимодействия компьютеров в базовой эталонной модели OSI

    Каждый уровень компьютера–отправителя взаимодействует с таким же уровнем компьютера-получателя, как будто он связан напрямую. Такая связь называется логической или виртуальной связью. В действительности взаимодействие осуществляется между смежными уровнями одного компьютера.

    Итак, информация на компьютере-отправителе должна пройти через все уровни. Затем она передается по физической среде до компьютера–получателя и опять проходит сквозь все слои, пока не доходит до того же уровня, с которого она была послана на компьютере-отправителе.

    В горизонтальной модели двум программам требуется общий протокол для обмена данными. В вертикальной модели соседние уровни обмениваются данными с использованием интерфейсов прикладных программ API (Application Programming Interface).

    Перед подачей в сеть данные разбиваются на пакеты. Пакет (packet) – это единица информации, передаваемая между станциями сети. При отправке данных пакет проходит последовательно через все уровни программного обеспечения. На каждом уровне к пакету добавляется управляющая информация данного уровня (заголовок), которая необходима для успешной передачи данных по сети, как это показано на рис. 2.3, где Заг – заголовок пакета, Кон – конец пакета.

    На принимающей стороне пакет проходит через все уровни в обратном порядке. На каждом уровне протокол этого уровня читает информацию пакета, затем удаляет информацию, добавленную к пакету на этом же уровне отправляющей стороной, и передает пакет следующему уровню. Когда пакет дойдет до Прикладного уровня, вся управляющая информация будет удалена из пакета, и данные примут свой первоначальный вид.

    Рис. 0.3 Формирование пакета каждого уровня семиуровневой модели

    Каждый уровень модели выполняет свою функцию. Чем выше уровень, тем более сложную задачу он решает.

    Отдельные уровни модели OSI удобно рассматривать как группы программ , предназначенных для выполнения конкретных функций . Один уровень, к примеру, отвечает за обеспечение преобразования данных из ASCII в EBCDIC и содержит программы необходимые для выполнения этой задачи.

    Каждый уровень обеспечивает сервис для вышестоящего уровня, запрашивая в свою очередь, сервис у нижестоящего уровня. Верхние уровни запрашивают сервис почти одинаково: как правило, это требование маршрутизации каких-то данных из одной сети в другую. Практическая реализация принципов адресации данных возложена на нижние уровни.

    Рассматриваемая модель определяет взаимодействие открытых систем разных производителей в одной сети. Поэтому она выполняет для них координирующие действия по:

    Взаимодействию прикладных процессов;

    Формам представления данных;

    Единообразному хранению данных;

    Управлению сетевыми ресурсами;

    Безопасности данных и защите информации;

    Диагностике программ и технических средств.

    На рис. 2.4 приведено краткое описание функций всех уровней.

    Рис. 0.4 Функции уровней

    ОБЗОРНАЯ ЛЕКЦИЯ №3