Зарядное устройство для кислотного аккумулятора 12в. Зарядное устройство для свинцово-кислотных аккумуляторов. Всё ли хорошо было сделано

Когда требуется зарядить свинцовый аккумулятор средних и малых размеров (не автомобильный), то чаще всего берут обычный блок питания или простой трансформатор с выпрямителем, после чего подключают к нему АКБ часов на 10, подобрав ток 0,1С. Это конечно колхоз. В более-менее приличных устройствах, где начинка "на уровне", требуется схема ЗУ со всеми системами слежения и автоматического управления зарядом. Для этого и предназначена данная схема зарядного устройство на основе чипа BQ24450 от Тексас инструментс. Эта микросхема берет на себя все функции по зарядке аккумулятора и поддержанию стабильности процесса, независимо от условий и состояния АКБ. А широкий диапазон зарядных токов и напряжений делает её подходящей для батарей аварийного освещения, радиоуправляемых автомобилей, мотоциклов, лодок или любого другого транспортного средства с 6 - 12 В батареей - просто подключите это зарядное устройство к аккумулятору и всё.

Характеристики микросхемы BQ24450

  • Вход 10-40 В постоянного тока
  • Ток нагрузки (заряда) 0,025-1 А
  • С внешним транзистором - до 15 А
  • Регулировка напряжения и тока во время зарядки
  • Температурно-компенсированный источник опорного напряжения


Микросхема BQ24450 содержит все необходимые элементы для оптимального контроля зарядки свинцово-кислотных аккумуляторных батарей. Она контролирует зарядный ток, а также напряжение зарядки, чтобы безопасно и эффективно заряжать батарею, увеличивая эффективную ёмкость батареи и срок службы. Встроенный прецизионный источник опорного напряжения с температурной компенсацией для отслеживания характеристик свинцово-кислотных ячеек поддерживает оптимальное напряжение зарядки в расширенном температурном диапазоне без использования каких-либо внешних компонентов.


Низкий ток потребления микросхемы позволяет точно контролировать процесс благодаря малому саморазогреву. Имеются компараторы, которые отслеживают напряжение зарядки и ток. Эти компараторы питаются от внутреннего источника, что положительно сказывается на стабильности цикла зарядки.

В радиолюбительской практике зачастую сталкиваешься с проблемой питания переносных устройств. Благо всё давно за нас уже придумано и создано, остается лишь воспользоваться подходящим аккумулятором, к примеру герметичными свинцово-кислотными АКБ которые получили оргомную популярность и при этом вполне доступны по деньгам.

Но тут появляется еще одна проблема, как их заряжать? С этой проблемой столкнулся и я, но поскольку и этот вопрос уже давно решен, хочу поделится своей конструкцией зарядного устройства.

В поисках подходящей схемы наткнулся на статью С.Малахова с двумя вариантами универсальных зарядных устройств, одна на паре КР142ЕН22, а вторая на одной микросхеме L200C, её и решил повторить. Почему именно на L200C ? Да плюсов полно: в целях экономии места, печатной платы, проще разводить плату, нужен только один радиатор, есть защита от перегрева, от переполюсовки, от короткого замыкания, да и по стоимости выходит дешевле двух КР142ЕН22.

В схему изменений практически не вносил, тут всё просто и вполне работоспособно, спасибо автору.

Состоит из регулируемого контроллера напряжения и тока выполненного в корпусе TO-220-5 (Pentawatt), выпрямителя и набора резисторов в токозадающей цепи.

В качестве трансформатора сначала применил накальный ТН36-127/220-50, но учитывая его недостаточный выходной ток в 1,2А позже заменил на ТН46-127/220-50 с выходным током 2,3А.

Эти трансформаторы удобны набором обмоток в 6,3В, комбинируя которые можно получить необходимое напряжение. Причем у третьей и четвертой вторичной обмотки есть отвод 5В (12 и 15 выводы). Автор рекомендует для режима заряда 6 вольтовых АКБ подключать обмотку на 12 В, а для режима заряда 12 вольтовых аккумуляторов еще одну дополнительно на 8 В. В таком режиме падение напряжения будет примерно равно 5 - 6 Вольтам. Я решил это падение немного уменьшить и подключил для шестивольтового режима обмотки на 10в, а для двенадцатвольтового дополнительную на 6,3в тем самым уменьшив падение напряжения до 2-3 Вольт. Меньшее падение напряжения облегчает тепловой режим, но при этом нельзя это падение делать слишком маленьким, надо учитывать падение напряжения на микросхеме. Если вдруг зарядное устройство будет работать нестабильно, можно переключить обмотки и подать большее напряжение.

Зарядное устройство для свинцово-кислотных аккумуляторов в авторском варианте оснащается амперметром и вольтметром, но, раз мы живем в эпоху современных технологий я решил поставить современную панель с ампервольтметром. Такие панели можно приобрести в радиомагазинах, я заказал у наших китайских братьев всего за 5 американских рублей. Панель позволяет измерять ток от 0,01 до 9,99 Ампер и напряжение от 0,1 до 99,9 Вольт, выполнен на микроконтроллере STM8, правда требует дополнительного питания, которое я взял прямо с выхода диодного моста. Следует принять во внимание, что замер тока производится по минусовой шине.

Переключение зарядного тока в авторском варианте выполняется галетным переключателем, но подобные переключатели достаточно дороги и труднодоступны, поэтому я решил применить дешевые кнопочные переключатели PS22F11, что удешевило конструкцию и дало одно преимущество, кнопками можно комбиниривать токоограничительные резисторы подбирая оптимальный ток заряда. При всех отключенных переключателях ток заряда составляет 0,15А.

Печатную плату сделал малогабаритную, под ЛУТ, все элементы зарядного устройства расположены плотно, но в принципе, можете переделать под свой вкус.

Радиатор охлаждения автор рекомендует ставить с размерами 90х60мм, мне же под руку попался радиатор от компьютерного кулера, с размерами 60х80мм и очень развитыми ребрами. Микросхему к радатору закрепил с помощью пластикового изолятора через теплопроводную диэлектрическую подложку.

В принципе, все нюансы и отличия моего и авторского варианта я описал, переходим к корпусу.

Поискав по полочкам и запасам подходящего корпуса для Зарядного устройство для свинцово-кислотных аккумуляторов я не нашел, а в этом случае радиолюбители поступают просто, берут корпус от АТХ блока питания компьютера. Достать их легко, в неработающем виде можно найти за копейки, корпус удобный, крепкий, есть разъем питания.

Подобрал блок питания с сплошной боковой стенкой, выпотрошил все содержимое оставив только разъем и выключатель питания. Разложил внутри все элементы конструкцию, разметил и просверлил отверстия и выпилил окошко для индикаторной панели.

Затем остается все собрать и подключить. Для соединения использовал провода от того же компьютерного блока питания.

Из явных минусов использования такого корпуса.

Трансформатор оказался великоват и верхняя крышка не закрылась плотно, хотя её все таки можно притянуть шурупом, хоть и с деформацией.
- поскольку корпус железный, на него передается вибрация от трансформатора, что вызывает лишний гул.
- дырка на корпусе откуда выходила коса проводов.

Для придания привлекательного внешнего вида решено распечатать на плотной бумаге фальшпанель с надписями для кнопок и т.п.

Настройка сводится к регулировке выходного напряжения для обоих режимов подстроечными резисторами, собственно всё как в авторском варианте, я выставил для 6в АКБ напряжение заряда в 7,2 Вольт, а для 12в АКБ в 14,5 Вольт.

Подключив вместо аккумулятора резистор 4,7 Ом и мощностью 5-10 Вт контролируем зарядный ток, в случае необходимости подбираем резисторы. При сборке платы рекомендую напаять на все дорожки припоя, для увеличения их площади сечения и уменьшения сопротивления, если Вы будете разводить свою плату, делайте эти дорожке как можно толще, чтобы свести к минимуму их сопротивление. Нет ничего страшного если у Вас ток заряда получился больше расчетного, аккумуляторы можно заряжать током большим чем 0,1 от номинальной емкости (0,1С), смело до 0,2 от номинала (0,2С).

После сборки и настройки Зарядное устройство для свинцово-кислотных аккумуляторов готово к работе и способно заряжать практически все типы свинцово кислотных АКБ напряжением 6 или 12 Вольт и с рабочим током от 1,2 до 15 Ампер.

По окончании заряда ток подаваемый на АКБ равен току саморазряда, аккумулятор в таком режиме может находиться очень долго и при этом сохранять и поддерживать свой заряд.

Зарядное устройство представляет собой параметрический стабилизатор напряжения 14,2 В с регулирующим элементом на полевом транзисторе. Цепь затвора мощного полевого транзистора VT1 питается от отдельного источника напряжением 30 В.

Принципиальная схема зарядного устройства
Для получения выходного напряжения 14,2 В необходимо подать на затвор транзистора VT1 стабилизированное напряжение около 18 В, поскольку напряжение отсечки полевого транзистора IRFZ48N достигает 4 В. Напряжение на затворе формирует параллельный стабилизатор DA1, питаемый через резистор R2 от источника напряжением 30 В. Стабистор VD3 введен для компенсации изменения ЭДС полностью заряженной батареи при изменении внешней температуры.

Если к зарядному устройству подключить разряженную аккумуляторную батарею (показатель глубоко разряженной батареи - ЭДС менее 11 В на ее выводах), то транзистор VT1 перейдет из активного режима стабилизации в полностью открытое состояние из-за большой разности между напряжением на затворе и на истоке: 18 В - 11 В = 7 В, это на 3 В больше напряжения отсечки 7 В - 4 В = 3 В.

Трех вольт для открывания транзистора IRFZ48N вполне достаточно. Сопротивление открытого канала этого транзистора станет пренебрежимо мало. Поэтому зарядный ток будет ограничен только резистором R3 и станет равным:
(23 В - 11 В) / 1 Ом = 12 А.
Это расчетное значение тока. Практически же он не превысит 10 А по причине падения напряжения на вторичной обмотке трансформатора и на диодах моста VD2, при этом ток будет пульсировать с удвоенной сетевой частотой. Если зарядный ток все же превысит рекомендованное значение (0,1 от емкости батареи), то он не повредит аккумуляторную батарею, поскольку вскоре начнет быстро спадать. По мере приближения напряжения батареи к напряжению стабилизации 14,2 В ток зарядки будет уменьшаться, пока не прекратится вовсе. В таком состоянии устройство может находиться долгое время без риска перезарядить батарею.

Лампа HL1 индицирует включение устройства в сеть, а HL2 сигнализирует, во-первых, об исправности предохранителя FU2 и, во-вторых, о подключении заряжаемой батареи. Кроме того, лампа HL2 служит небольшой нагрузкой, облегчающей точную установку выходного напряжения.

В устройстве необходимо применить сетевой трансформатор габаритной мощностью не менее 150 Вт. Обмотка II должна обеспечивать напряжение 17...20 В при токе нагрузки 10 А, а обмотка III - 5...7 В при 50...100 мА. Транзистор IRFZ48N можно заменить на IRFZ46N. Если устройство применять для зарядки аккумуляторных батарей емкостью не более 55 А⋅ч, то подойдет транзистор IRFZ44N (или отечественный. КП812А1).

Выпрямительный мост GBPC15005 заменим четырьмя диодами Д242А, Д243А или подобными. Вместо КД243А возможно применить диод КД102А или КД103А. Резистор R3 изготавливают из нихромовой проволоки диаметром не менее 1 мм. Ее наматывают на керамический стержень, а каждый из выводов зажимают под винт М4 с гайкой и лепестком для пайки. Монтировать резистор следует так, чтобы ничто не препятствовало его естественному охлаждению потоком воздуха.

Стабистор КС119А заменят четыре диода КД522А, соединенных последовательно согласно. Вместо TL431 подойдет его отечественный аналог КР142ЕН19А. Резистор R6 следует выбрать из серии СП5.

Транзистор VT1 необходимо установить на теплоотвод с полезной площадью 100...150 см 2 . Тепловая мощность в процессе зарядки будет распределяться между транзистором и резистором R3 следующим образом: в начальный момент, когда транзистор открыт, вся тепловая мощность будет выделяться на резисторе R3; к середине зарядного цикла мощность распределится между ними поровну, и для транзистора это будет максимум нагревания (20...25 Вт), а к концу зарядный ток уменьшится настолько, что и резистор, и транзистор останутся холодными.

После сборки устройства необходимо только до подключения аккумуляторной батареи подстроечным резистором R6 установить на выходе пороговое напряжение 14,2 В.

Описанное в статье устройство просто и удобно в эксплуатации. Однако необходимо иметь в виду, что далеко не все экземпляры батарей имеют в заряженном виде ЭДС, равную 14,2 В. Мало того, в течение срока эксплуатации она не остается постоянной в силу деструкционных изменений в пластинах батареи. Значит, если зарядное устройство отрегулировано так, как рекомендует автор, некоторые батареи окажутся недозаряженными, а другие - будут перезаряжаться и могут "закипеть". Зависит ЭДС и от температуры батареи.

Поэтому для каждого экземпляра батареи надо предварительно определить оптимальное значение его ЭДС путем контролируемой зарядки до первых признаков "закипания" и с учетом температуры установить в зарядном устройстве это значение. Целесообразно также в дальнейшем периодически (хотя бы раз в год) проверять ЭДС и корректировать установку порогового напряжения зарядного устройства.

В. Костицын
Радио 3-2008
www.radio.ru

Как известно, герметичные свинцово-кислотные аккумуляторы могут быть постоянно подключенными к зарядному устройству, то есть быть в режиме подзарядки. Чтобы знать, когда аккумулятор полностью заряжен, зарядное устройство должно быть оснащено каким-либо индикатором. Ниже описывается один из вариантов зарядного устройства снабженного индикатором заряда.

Описание зарядного устройства для свинцово-кислотных аккумуляторов

Напряжение на схему зарядного устройства подается на клеммы Х1 и Х2 от внешнего источника постоянного напряжения (12…20 вольт). Зарядный ток поступает на индикатор включения зарядного тока (светодиод HL1), транзистор VТ1 и напряжения зарядки . Стабилизированное зарядное напряжение подключается к клеммам Х3 и Х4, которые подключаются к свинцово-кислотному аккумулятору.

Индикатор тока зарядки включает в себя датчик тока (резистора R1), ток зарядки протекающий через него создает падение напряжения на нем. Из-за падения напряжения открывается транзистор VТ1, в коллектор которого подключен индикатор – светодиод HL1.

Величина падения напряжения, при котором открывается транзистор VT1, устанавливается резистивным делителем на сопротивлениях R3 и R4. Если ток зарядки меньше установленного уровня тока (ограничение тока устанавливается подстроечным резистором R4), светодиод HL1 не светится. С увеличением зарядного тока, свечение светодиода также плавно увеличивается.

В качестве стабилизатора напряжения зарядки используется стабилизатор регулируемым выходным напряжением LM317. В соответствии с используемым уровнем напряжения и зарядного тока стабилизатор LM317должн быть установлен на хороший теплоотвод.

Подстроечный резистор R5 регулирует выходное напряжение на клеммах Х3 и Х4. Для батарей с номинальным напряжением 6 В выходное напряжение заряда должно составлять 6,8…6,9 В, для аккумуляторов с номинальным напряжением 12 В это выходное напряжение будет уже 13,6…13,8 В.

Необходимо отметить, что входное напряжение от внешнего источника постоянного напряжения должно быть больше напряжения на выходе зарядника примерно на 5 вольт (падение напряжения на R6 и LM317).

ЗАРЯДНОЕ УСТРОЙСТВО

ДЛЯ КИСЛОТНО - СВИНЦОВЫХНЕОБСЛУЖИВАЕМЫХ SLA АККУМУЛЯТОРОВ ЁМКОСТЬЮ 4 ... 17 А/час

Необслуживаемые кислотно-свинцовые аккумуляторы в настоящее время очень широко используются в различных источниках бесперебойного питания компьютерной техники, системах охранной сигнализации, источниках питания электроинструмента и даже в детских игрушках. Достоинством их является простота эксплуатации, отсутствие жидкого электролита и, соответственно, нет нужды следить за его уровнем и плотностью. Для сокращения времени на восстановление электрической ёмкости зарядку этих аккумуляторов обычно производят большим током (режим быстрой зарядки), численно достигающим номинальной ёмкости. Из-за отсутствия возможности произвести доливку выкипевшего электролита при его перезарядке, требования к зарядному току этих аккумуляторов очень жёсткие - фирмы производители аккумуляторов требуют, чтобы пульсации зарядного тока не превышали 2,5% от максимального тока, а зарядный ток изменялся во времени строго определённым образом. Эти условия практически всегда выполняются в источниках бесперебойного питания, содержащих сложные импульсные блоки питания. Этим же требованиям удовлетворяют ранее описанные в этом разделе импульсные зарядные устройства с ключевыми транзисторами и накопительным дросселем. Рассмотренные схемы достаточно сложны для повторения, а в быту часто требуются простейшие малогабаритные зарядные устройства, не самые оптимальные с точки обеспечения выработки максимального ресурса аккумуляторов, но зато имеющие небольшие габариты и высокий КПД. Ниже приводится схема такого устройства. Зарядный ток аккумулятора поддерживается стабильным на уровне 10% от численного значения номинальной ёмкости, что уменьшает отрицательное действие импульсного характера этого тока, а прекращение зарядки происходит при достижении напряжения на клеммах аккумулятора примерно 15В.

Требуемое значение зарядного тока достигается подбором сопротивления резистора R8 . Значения пороговых напряжений отключения процесса зарядки определяются соотношением резисторов R12/R6 и R12/R6||R2 . При расчёте номиналов резисторов исходят из того, что при достижении максимального напряжения на аккумуляторе напряжение на выводе 16 микросхемы DA1 должно составлять 5,00В. В процессе зарядки яркость свечения светодиода HL1 изменяется, а при полной зарядке светодиод начинает мигать, привлекая внимание.

Схема является модификацией ранее описанного устройства. В качестве регулирующего элемента используется тиристор, что позволяет упростить схему, исключив конденсаторы большой ёмкости и дроссели. Все элементы устройства, кроме силового трансформатора располагаются на небольшой печатной плате 45 х 45 мм.

КПД устройства очень высок и элементы схемы, включая тиристор, не требуют для охлаждения радиатор.

Предлагаемое устройство можно использовать и для зарядки иных типов аккумуляторов, скорректировав зарядный ток и пороговое напряжение отключения. Заменив силовые диоды и трансформатор на более мощные и установив тиристор на небольшой радиатор схему можно использовать и для зарядки автомобильных аккумуляторов. Сопротивление резистора R8 при этом уменьшают в 5 -10 раз. При отсутствии ошибок в монтаже и исправности элементов схема начинает работать сразу. Необходимо лишь скорректировать зарядный ток и пороговое напряжение.