Типы файлов. Иерархическая структура файловой системы. Файлы и файловая система

Пользователи обращаются к файлам по символьным именам. Однако способ­ности человеческой памяти ограничивают количество имен объектов, к кото­рым пользователь может обращаться по имени. Иерархическая организация про­странства имен позволяет значительно расширить эти границы. Именно поэтому большинство файловых систем имеет иерархическую структуру, в которой уров­ни создаются за счет того, что каталог более низкого уровня может входить в ка­талог более высокого уровня (рис. 19).

Рис. 19. Иерархия файловых систем:

а – одноуровневая организация; б – дерево; в – сеть

Граф, описывающий иерархию каталогов, может быть деревом или сетью. Ката­логи образуют дерево, если файлу разрешено входить только в один каталог (рис. 19, б), и сеть – если файл может входить сразу в несколько каталогов (рис. 19, в). Например, в MS-DOS и Windows каталоги образуют древовидную структуру, а в UNIX – сетевую. В древовидной структуре каждый файл являет­ся листом . Каталог самого верхнего уровня называется корневым каталогом , или корнем (root).

При такой организации пользователь освобожден от запоминания имен всех фай­лов, ему достаточно примерно представлять, к какой группе может быть отнесен тот или иной файл, чтобы путем последовательного просмотра каталогов найти его. Иерархическая структура удобна для многопользовательской работы: каж­дый пользователь со своими файлами локализуется в своем каталоге или подде­реве каталогов, и вместе с тем все файлы в системе логически связаны.

Частным случаем иерархической структуры является одноуровневая организа­ция, когда все файлы входят в один каталог (рис. 19, а).

Имена файлов

Все типы файлов имеют символьные имена. В иерархически организованных файловых системах обычно используются три типа имен файлов: простые, состав­ные и относительные.

Простое , или короткое , символьное имя идентифицирует файл в пределах одного каталога. Простые имена присваивают файлам пользователи и программисты, при этом они должны учитывать ограничения ОС как на номенклатуру символов, так и на длину имени. До сравнительно недавнего времени эти границы были весьма узкими. Так, в файловой системе FAT длина имен ограничи­вались схемой 8.3 (8 символов – собственно имя, 3 символа – расширение имени), а в файловой системе s5, поддерживаемой многими версиями ОС UNIX, простое символьное имя не могло содержать более 14 символов. Однако пользователю гораздо удобнее работать с длинными именами, поскольку они позволяют дать файлам легко запоминающиеся названия, ясно говорящие о том, что содержится в этом файле. Поэтому современные файловые системы, а также усовершенство­ванные варианты уже существовавших файловых систем, как правило, поддер­живают длинные простые символьные имена файлов. Например, в файловых сис­темах NTFS и FAT32, входящих в состав операционной системы Windows NT, имя файла может содержать до 255 символов.

Примеры простых имен файлов и каталогов:

приложение к CD 254L на русском языке.doc

installable filesystem manager.doc

В иерархических файловых системах разным файлам разрешено иметь одинако­вые простые символьные имена при условии, что они принадлежат разным ката­логам. То есть здесь работает схема “много файлов – одно простое имя”. Для однозначной идентификации файла в таких системах используется так называемое полное имя.

Полное имя представляет собой цепочку простых символьных имен всех катало­гов, через которые проходит путь от корня до данного файла. Таким образом, полное имя является составным, в котором простые имена отделены друг от друга принятым в ОС разделителем. Часто в качестве разделителя используется прямой или обратный слеш, при этом принято не указывать имя корневого ката­лога. На рис. 19, б два файла имеют простое имя main.exe, однако их составные имена /depart/main.exe и /user/anna/main exe различаются.

В древовидной файловой системе между файлом и его полным именем имеется взаимно однозначное соответствие “один файл – одно полное имя”. В файловых системах, имеющих сетевую структуру, файл может входить в несколько катало­гов, а значит, иметь несколько полных имен, здесь справедливо соответствие “один файл – много полных имен”. В обоих случаях файл однозначно идентифи­цируется полным именем.

Файл может быть идентифицирован также относительным именем. Относи­тельное имя файла определяется через понятие “текущий каталог”. Для каждого пользователя в каждый момент времени один из каталогов файловой системы является текущим, причем этот каталог выбирается самим пользователем по ко­манде ОС. Файловая система фиксирует имя текущего каталога, чтобы затем использовать его как дополнение к относительным именам для образования пол­ного имени файла. При использовании относительных имен пользователь иден­тифицирует файл цепочкой имен каталогов, через которые проходит маршрут от текущего каталога до данного файла. Например, если текущим каталогом является каталог /user, то относительное имя файла /user/anna/main.exe выглядит следующим образом: anna/main.exe.

В некоторых операционных системах разрешено присваивать одному и тому же файлу несколько простых имен, которые можно интерпретировать как псевдо­нимы. В этом случае, так же как в системе с сетевой структурой, устанавливается соответствие “один файл – много полных имен”, так как каждому простому име­ни файла соответствует по крайней мере одно полное имя.

И хотя полное имя однозначно определяет файл, операционной системе проще работать с файлом, если между файлами и их именами имеется взаимно одно­значное соответствие. С этой целью она присваивает файлу уникальное имя, так что справедливо соотношение “один файл – одно уникальное имя”. Уникальное имя существует наряду с одним или несколькими символьными именами, при­сваиваемыми файлу пользователями или приложениями. Уникальное имя пред­ставляет собой числовой идентификатор и предназначено только для опера­ционной системы. Примером такого уникального имени файла является номер индексного дескриптора в системе UNIX.

Монтирование

В общем случае вычислительная система может иметь несколько дисковых уст­ройств. Даже типичный персональный компьютер обычно имеет один накопитель на жестком диске, один накопитель на гибких дисках и накопитель для компакт-дисков. Мощные же компьютеры, как правило, оснащены большим количеством дисковых накопителей, на которые устанавливаются пакеты дисков. Более того, даже одно физическое устройство с помощью средств операционной системы может быть представлено в виде нескольких логических устройств, в частности путем разбиения дискового пространства на разделы. Возникает вопрос, каким образом организовать хранение файлов в системе, имеющей несколько устройств внешней памяти?

Первое решение состоит в том, что на каждом из устройств размещается авто­номная файловая система, т. е. файлы, находящиеся на этом устройстве, описы­ваются деревом каталогов, никак не связанным с деревьями каталогов на других устройствах. В таком случае для однозначной идентификации файла пользова­тель наряду с составным символьным именем файла должен указывать иденти­фикатор логического устройства. Примером такого автономного существования файловых систем является операционная система MS-DOS, в которой полное имя файла включает буквенный идентификатор логического диска. Так, при об­ращении к файлу, расположенному на диске А, пользователь должен указать имя этого диска: A:\privat\letter\uni\let1.doc.

Другим вариантом является такая организация хранения файлов, при которой пользователю предоставляется возможность объединять файловые системы, на­ходящиеся на разных устройствах, в единую файловую систему, описываемую единым деревом каталогов. Такая операция называется монтированием . Рассмот­рим, как осуществляется эта операция на примере ОС UNIX.

Среди всех имеющихся в системе логических дисковых устройств операционная система выделяет одно устройство, называемое системным. Пусть имеются две файловые системы, расположенные на разных логических дисках (рис. 20), при­чем один из дисков является системным.

Файловая система, расположенная на системном диске, назначается корневой. Для связи иерархий файлов в корневой файловой системе выбирается некото­рый существующий каталог, в данном примере – каталог man. После выполне­ния монтирования выбранный каталог man становится корневым каталогом вто­рой файловой системы. Через этот каталог монтируемая файловая система подсоединяется как поддерево к общему дереву (рис. 21).

Рис. 20. Две файловые системы до монтирования

Рис. 21. Общая файловая система после монтирования

После монтирования общей файловой системы для пользователя нет логической разницы между корневой и смонтированной файловыми системами, в частности, именование файлов производится так же, как если бы она с самого начала была единой.

Атрибуты файлов

Понятие “файл” включает не только хранимые им данные и имя, но и атрибу­ты. Атрибуты файла – это информация, описывающая свойства файла. Примеры воз­можных атрибутов файла:

 тип файла (обычный файл, каталог, специальный файл и т. п.);

 владелец файла;

 создатель файла;

 пароль для доступа к файлу;

 информация о разрешенных операциях доступа к файлу;

 времена создания, последнего доступа и последнего изменения;

 текущий размер файла;

максимальный размер файла;

 признак “только для чтения”;

 признак “скрытый файл”;

 признак “системный файл”;

 признак “архивный файл”;

 признак “двоичный/символьный”;

 признак “временный” (удалить после завершения процесса);

 признак блокировки;

 длина записи в файле;

 указатель на ключевое поле в записи;

 длина ключа.

Набор атрибутов файла определяется спецификой файловой системы: в фай­ловых системах разного типа для характеристики файлов могут использоваться разные наборы атрибутов. Например, в файловых системах, поддерживающих неструктурированные файлы, нет необходимости использовать три последних атрибута в приведенном списке, связанных со структуризацией файла. В одно­пользовательской ОС в наборе атрибутов будут отсутствовать характеристики, имеющие отношение к пользователям и защите, такие как владелец файла, соз­датель файла, пароль для доступа к файлу, информация о разрешенном доступе к файлу.

Пользователь может получать доступ к атрибутам, используя средства, предоставленные для этих целей файловой системой. Обычно разрешается читать зна­чения любых атрибутов, а изменять – только некоторые. Например, пользователь может изменить права доступа к файлу (при условии, что он обладает необходи­мыми для этого полномочиями), но изменять дату создания или текущий размер файла ему не разрешается.

Значения атрибутов файлов могут непосредственно содержаться в каталогах, как это сделано в файловой системе MS-DOS (рис. 22, а ). На рисунке представлена структура записи в каталоге, содержащая простое символьное имя и атрибуты файла. Здесь буквами обозначены признаки файла: R – только для чтения, А – архивный, Н – скрытый, S – системный.

Рис. 22. Структура каталогов:

а – структура записи каталога MS-DOS (32 байта); б – структура записи каталога ОС UNIX

Другим вариантом является размещение атрибутов в специальных таблицах, ко­гда в каталогах содержатся только ссылки на эти таблицы. Такой подход реали­зован, например, в файловой системе ufs ОС UNIX. В этой файловой системе структура каталога очень простая. Запись о каждом файле содержит короткое символьное имя файла и указатель на индексный дескриптор файла, так называ­ется в ufs таблица, в которой сосредоточены значения атрибутов файла (рис. 22, б ).

В том и другом вариантах каталоги обеспечивают связь между именами файлов и собственно файлами. Однако подход, когда имя файла отделено от его атрибу­тов, делает систему более гибкой. Например, файл может быть легко включен сразу в несколько каталогов. Записи об этом файле в разных каталогах могут со­держать разные простые имена, но в поле ссылки будет указан один и тот же но­мер индексного дескриптора.


Похожая информация.



^ Иерархическая файловая система.

Все файлы файловой структуры строятся в дерево. Корнем дерева является так называемый корень файловой системы. Если узел дерева является листом, то это файл, который может содержать либо данные, либо являться каталогом. Узлы, отличные от листьев являются каталогами. Соответственно, именование в такой системе может происходить разными способами. Первый - именование фала относительно ближайшего каталога. Если мы посмотрим файлы, которые являются ближайшими для каталога F0 - это файл F1 (он тоже является каталогом) и файл F2. То есть если мы каким-то образом подразумеваем (системным образом), что работаем в каталоге F0, то можем обращаться к файлам в данном каталоге только по их именам (F1 и F2). Соответственно, на одном уровне имена должны быть уникальны (в пределах одного каталога). Так как мы имеем структуру дерева, то можно говорить о полном имени файла, которое составляет путь от корня дерева, до файла. Например, путь к файлу F3 будет выглядеть, как “/F0/F1/F3”. В одно и то же время мы можем работать как с полным, так и с коротким именем файла. А так как по свойству дерева путь к каждому листу однозначен, то мы сразу решаем проблему унификации имен.

Первой такая организация появилась в ОС Multics, которая разрабатывалась в университете Беркли в конце 60х годов. Это было давно, но такое хорошее и красивое решение с тех пор стало появляться во многих ОС.

Соответственно с иерархией каждому файлу можно привязывать некоторые атрибуты, связанные с правами доступа, этими атрибутами могут обладать как файлы, так и каталоги. То есть структурная организация такой файловой системы хороша для многопользовательской системы. Ибо с одной стороны нет проблемы именования, а с другой стороны такая система может сильно и хорошо наращиваться.

Защита данных в ОС

^ Идентификация - возможность ОС распознать определенного пользователя и выполнять в зависимости от определения нужные действия по защите данных и т.п. Например, MS DOS - однопользовательская ОС. Существуют системы, которые позволяют регистрировать пользователей, но эти пользователи никак между собой не связаны (примером могут являться некоторые ОС фирмы IBM для мейнфреймов), а значит их нельзя организовать в группы. Но было бы удобно выделить в отдельную группу - лабораторию, кафедру, учебную группу студентов и т.п.

В иерархической организации пользователей есть понятие группы. А в группе есть реальные пользователи.

При регистрации конкретного пользователя его следует отнести к какой-либо группе.

Раз пользователи разделены на группе, то по аналогии с разделением между конкретными пользователями, можно разделять ресурсы с группой (то есть пользователь может сделать свои файлы доступными для всех членов какой-то группы.

И такое деление на группы может быть также многоуровневым с соответствующим распределением прав и возможностей.

Маленькое замечание - сейчас появляются ОС, в которых права доступа могут быть не только иерархическими, но и более сложные - например, нарушая иерархию (какой-то файл может быть доступным конкретному пользователю из группы другой ветви дерева).

Вот, наверное, и все, что следовало бы сказать о свойствах и функциях ОС. Естественно, мы рассмотрели далеко не все функции ОС. Что-то было специально упущено, так как мы рассматриваем ОС в упрощенной модели. Ибо наша цель - не изучение конкретной ОС, а научиться классифицировать ОС, с каких точек зрения следует на нее смотреть и сравнивать различные типы ОС.

Лекция 7

ОС Unix

Сегодня мы с вами переходим к началу рассмотрения ОС Unix, поскольку многие решения, которые принимаются в ОС мы будем рассматривать на примере этой ОС.

В середине 60х годов в Bell лаборатории фирмы AT&T проводились исследования и разработка одной из первых ОС в современном ее понимании - ОС Multics. Это ОС разделения времени, многопользовательская, а также в этой системе были предложены фактически решения по организации файловых систем. В частности, была предложена иерархическая древообразная файловая система. Это, ориентировочно, 1965 год. От этой разработки через некоторое время получила начало ОС Unix. Одна из предысторий говорит, что на фирме был ненужный компьютер PDP8 с очень малоразвитым программным обеспечением. А требовалась машина, которая бы позволяла организовывать удобную работу пользователя, в частности, удобный ввод информации. И известная группа людей - Томпсон и Ритчи занялись разработкой на этой машине новой ОС. Другой вариант был таков, что они занимались реализацией новой игры, а те средства, которые имелись были недоступны или неудобны, и они решили поиграться с этой машиной. Результатом стало появление ОС Unix. Особенностью этой системой являлось то, что она являлась первой системной программой написанной на языке, отличном от языка ассемблера. Дляцели написания этого системного программного обеспечения, в частности, ОС Unix, также параллельно проводились работы, которые начинались от языка BCPL, из него был образован язык B, который оперировал с машинными словами, далее абстракция машинных слов - BN и, наконец, язык “C”. И после 1973 года ОС Unix была переписана окончательно на язык “С”. В результате появилась ОС, 90% кода которой было написано на языке высокого уровня, языке, не зависящем от архитектуры машины и системы команд, а 10% было написанона ассемблере, в эти 10% входят наиболее критичные к реализации по времени части ядра ОС.

Многих программистов в то время это немного шокировало, мало кто верил, что такая ОС способна жить, поскольку всегда язык высокого уровня ассоциировался с большой неэффективностью. Но язык “С” тем не менее был сконструирован таким образом, что позволял писать эффективные программы и транслировать их в также достаточно эффективный машинный код.

Из таких конструктивных свойств следует отметить то, что “С” сильно построен на работе с указателями. Когда мы пишем программу на ассемблере, то очень часто для достижения требуемого результата нам нужно манипулировать с адресами. Возможность оперировать указателями - первое свойство “С”, которое позволяет эффективно транслировать программу на этом языке в машинный код.

Если мы посмотрим на нормальную программу на ассемблере, то заметим следующее - при программировании каких-то блоков мы часто используем побочный эффект (например, во время вычисления выражения мы можем получать и куда-то откладывать промежуточные результаты), также можно поступать и в языке “С”. Таким образом, понятие выражения в “С” было гораздо шире, чем в других языках того времени. И в выражениях, кроме новых операций, таких как работа с указателем, смещения сдвиги и т.п., появилась принципиально новая операция - операция присваивания. Почему она новая? Потому что во многих языках до “С”, а также и после него не было операции присваивания - был оператор присваивания. Разница в одном - если мы имеем оператор присваивания, во-первых, требуется, чтобы в правой части такой операции уже не было (мы не можем использовать побочный эффект), и второе - левая часть оператора присваивания - это некоторая ссылка на единичную область памяти. Внесение оператора присваивания внутрь выражения позволило решать проблему побочных эффектов (значения подвыражений, которые могут быть использованы во вне - а они в свою очередь сокращают число обменов с ОЗУ), а это средство эффективности.

Эти и, наверное, только эти свойства языка определили его живучесть, пригодность для программирования системных компонентов и возможность оптимальной трансляции кода различных машин. С профессиональной точки зрения, язык “С” - ужасный язык. Основным требованием, которое предъявляется сегодня к языкам программирования является безопасность программирования. То есть средства языка должны минимизировать количество возможных ошибок.

И свойствам таких языков относится следующее:


    1. Жесткий контроль типов. То есть если мы попробуем умножить целочисленную переменную на плавающую, то язык выдаст ошибку. Все преобразования типов по умолчанию недопустимы.

    2. Обеспечение контроля за доступом в память программы. Это означает, что если у нас в памяти число было записано, как целое, то и считать его оттуда мы можем только как целое, а не как плавающее или символ. В “С” же и других языках бесконтрольный доступ к памяти предоставляет указатель, более того, через указатель мы с одной стороны теряем любую информацию о типе, а с другой стороны мы можем обманывать функциипо части фактических и формальных параметров.

    3. Контроль за взаимодействием модулей. Суть этого свойства в том, что много ошибок появляется в том случае, что если функция продекларировала один набор параметров, а обращение к ней идет с другим набором, причем различие может быть как в количестве, так и в типах. Язык “С”, несмотря даже на версию ANSI C, которая пыталась отчасти решить эту проблему - всегда остается возможность обмануть функцию и передать ей параметр другого типа, вместо шести параметров можно передать один параметр.
Вот по этим трем позициям язык “С” является нехорошим языком. Но тем не менее это “менталитет” программистов, который заключается в том, что почему-то наиболее живучими языками являются концептуально плохие языки, к таким языкам помимо “С” можно добавить еще Фортран.

Итак, 1973 год. Появление ОС Unix, причем она уже была написана на языке “С”. Какими основными свойствами уже тогда обладала эта ОС. Первое свойство - концепция файлов, основным объектом, которым оперирует ОС - это файл. Файл - это набор данных, файл с точки зрения Unix - это внешнее устройство, файл - это каталог, который содержит информацию о принадлежащих ему файлах и т.д. На сегодняшний день стратегия файлов распространена в Unix’е практически на все. Второе свойство, которое является продолжением или следствием первого, это то, что ОС построена очень интересно. В отличии от предыдущих ОС, где каждая команда была зашита внутрь, и эту команду нельзя было модифицировать, убрать из системы, создать новую команду - вUnix’е проблемы команд пользователя решены очень элегантно за счет двух моментов. Первый - Unix декларирует стандартный интерфейс передачи параметров извне внутрь процесса. Второй - все команды реализованы в виде файлов, это означает, что можно свободно добавлять новые команды в систему, которые будут доступны либо мне, либо группе пользователей, либо всем, а можно удалять команды.

Давайте начнем рассмотрение конкретных свойств ОС Unix. Первое, что мы будем рассматривать, это файловая система, организация работы с файлами.

Файловая система Unix

Файловая система Unix, это иерархическая, многопользовательская файловая система. Ее можно представить в виде дерева:

В корне дерева находится “корневой каталог”, узлами, отличными от листьев дерева являются каталоги. Листьями могут являться: файлы (в традиционном понимании - именованные наборы данных), пустые каталоги (каталоги, с которыми не ассоциировано ни одного файла). В системе определено понятие имени файла - это имя, которое ассоциировано с набором данных в рамках каталога, которому принадлежит этот файл. Например, каталогу D1 принадлежат файлы: N1, N2, N3; каталогу D0 принадлежат: N4, N5 и D1, последний тоже является файлом, но специальный. Итак, имя - это имя, которое ассоциировано снабором данных в контексте принадлежности каталогу. Кроме того, есть понятие полного имени. Полное имя - это уникальный путь от корня файловой системы до конкретного файла. Первый символ имени - это корневой каталог “/”, а далее через наклонную черту перечислены все каталоги, пока не дойдет до нужного файла. Например, файл N3 имеет полное имя “/D0/D1/N3”. За счет того, что такой путь для каждого файла в любом каталоге уникален, то мы можем именовать одинаковыми именами файлы в различных каталогах. Например, имя N4 присутствует в каталогах D0 и D4, но это разные файлы, так как полные пути к ним различны (/D4/N4, /D0/N4).

Замечание. На самом деле файловая система Unix не является древообразной. Все то, что говорилось выше - правильно, но в системе имеется возможность нарушения красивой и удобной иерархии в виде дерева, так как имеется возможность ассоциировать несколько имен с одним и тем же содержимым файла. И могут возникать такие ситуации, когда, например, “/D4/N3” и “/D0/D1/N1” являются, по сути дела, одним файлом с двумя именами.

Еще одно замечание. В ОС Unix используется трехуровневая иерархия пользователей:

Первый уровень - все пользователи. Они подразделены на группы и, соответственно, группы состоят из реальных пользователей. В связи с этой трехуровневой организацией пользователей каждый файл обладает тремя атрибутами:

1) Владелец файла. Этот атрибут связан с одним конкретным пользователем, который автоматически назначается системой владельцем файла. Владельцем можно стать по умолчанию, создав файл, а также есть команда, которая позволяет менять владельца файла.

2) Защита доступа к файлу. Доступ к каждому файлу (от файла ядра системы до обыкновенного текстового файла) лимитируется по трем категориям:

Права владельца (что может делать владелец с этим файлом, в общем случае - не обязательно все, что угодно);

Права группы, которой принадлежит владелец файла. Владелец сюда не включается (например, файл может быть закрыт на чтение для владельца, а все остальные члены группы могут свободно читать из этого файла;

Все остальные пользователи системы;

По этим трем категориям регламентируются три действия: чтение из файла, запись в файл и исполнение файла (в мнемонике системы R,W,X, соответственно). В каждом файле по этим трем категориям определено - какой пользователь может читать, какой писать, а кто может запускать его в качестве процесса.

Это некоторые предварительные данные по файловой системе. Теперь давайте рассмотрим структуру файловой системы на диске.

Сначала определим некоторые понятия:

Для любой вычислительной системы определено понятие системного внешнего запоминающего устройства (ВЗУ). Это устройство, к которому осуществляет доступ аппаратный загрузчик системы с целью запуска ОС . Суть заключается в следующем - практически любая вычислительная система имеет диапазон адресного пространства оперативной памяти, размещенной в ПЗУ. В ПЗУ размещается небольшая программа (хотя понятие размера относительно, но она действительно небольшая), которая при включении вычислительной машины обращается к фиксированному блоку ВЗУ, считывает его в память и передает управление на фиксированный адрес, относящийся к считанному блоку данных.

Считается, что считанный блок данных является программным загрузчиком и программный загрузчик раскручивает запуск ОС. Следует отметить, что если аппаратный загрузчик в подавляющем большинстве машин системно независим (то есть он не знает, какая ОС будет загружена), то программный загрузчик - это уже компонент ОС, ему известно, что будет загружаться конкретная ОС, он знает, где размещаются нужные для загрузки данные.

В любой системе принято разбиение пространства ВЗУ на некоторые области данных, которые называются блоками. Размер блока (логического блока в ОС) является фиксированным атрибутом. В ОС Unix в различных ее вариациях размер блока был параметром меняющимся в зависимости от варианта ОС. Для простоты и единообразия мы будем считать, что логический блок ВЗУ равен 512 байт.

Итак, рассмотрим структуру файловой системы. Представим адресное пространство системного ВЗУ в виде последовательности блоков.

Будем считать, что этих блоков N+M-1.

Первый блок - это блок начальной загрузки. Размещение этого блока в нулевом блоке системного устройства определяется аппаратурой, так как аппаратной загрузчик всегда обращается к конкретному блоку системного устройства (к нулевому блоку). Это последний компонент файловой системы, который зависит от аппаратуры.

Следующий блок - суперблок файловой системы. Он содержит оперативную информацию о состоянии файловой системы, а также данные о параметрах настройки файловой системы. В частности суперблок имеет информацию о


    • количестве индексных дескрипторов (ИД) в файловой системе;

    • размере файловой системы;

    • свободных блоках файлов;

    • свободных ИД;

    • еще ряд данных, которые мы не будем перечислять в силу уникальности их назначения.
Третий блок - область индексных дескрипторов. ИД - это специальная структура данных файловой системы, которая взаимооднозначно соответствует файлу. С каждым содержимым файла связан один и только один ИД. ИД организуют не один блок, а пространство блоков, размеры которого определяются параметром генерации файловой системы (определяется по количеству ИД,указанном в суперблоке). Соответственно, каждый индексный регистр содержит следующую информацию:


    • код привилегии/защиты;


    • длина файла;


Далее идут блоки файлов. Это пространство ВЗУ, в котором размещается вся информация, находящаяся в файлах и о файлах, которая не поместилась в уже перечисленных блоках.

Последняя область данных (она в разных системах размещается по-разному), но для простоты изложения мы будем считать, что эта область находится сразу за блоками файлов - это область сохранения.

Это концептуальная схема структуры файловой системы. Теперь давайте вернемся и рассмотрим некоторые ее части более детально.

Прежде всего интерес вызывают области свободных блоков файлов и свободных ИД. В Unix видно влияние двух факторов: первый - это то, что файловая система разрабатывалась тогда, когда ВЗУ объемом 5-10Мб считалось очень большим и в реализации алгоритмов по работе с системой видны старания автором по оптимизации этого процесса; и второй - это свойства файловой системы по оптимизации доступа, критерием которого является количество обменов, которые файловая система производит для своих нужд, не связанных с чтением или записью информации файлов.

Суперблок содержит список свободных блоков файлов, он состоит из 50 элементов. Суть работы с этим списком заключается в следующем - в буфере, состоящем из 50 элементов (при условии того, что блок - 512 байт, 1 блок - 16 битное слово), в них записаны номера свободных блоков пространства блоков файлов с 2 до 49. В 0 элементе содержится указатель на продолжение массива, а в последнем элементе содержится указатель на свободный элемент в массиве.

Если какому-то процессу для расширения файла требуется свободный блок, то система по указателю N/B (номер блока) выбирает элемент массива, и этот блок предоставляется файлу. Если происходит сокращение файла, то высвободившиеся номера добавляются в массив свободных блоков и корректируется указатель N/B.

Так как размер массива - 50 элементов, то возможны две критические ситуации:


    1. Когда мы освобождаем блоки файлов, а они не могут поместиться в этом массиве. В этом случае из файловой системы выбирается один свободный блок и заполненный полностью массив свободных блоков копируется в этот блок, после этого значение указателя N/B обнуляется, а в нулевой элемент массива, который находится в суперблоке, записывается номер блока, который мы выбрали для копирования содержимого массива. Таким образом, если мы постоянно освобождаем блоки, то образуется список, в котором будут размещены все свободные блоки файловой системы.

    2. Когда мы выбрали все свободные блоки и содержимое элементов массива свободных блоков исчерпалось. Если нулевой элемент массива равен нулю, то это означает, что исчерпано все пространство файловой системы. Если этот элемент нулю не равен, то это означает, что существует продолжение массива. Это продолжение считывается в копию суперблока в оперативной памяти.
Для получения свободного блока и его освобождения в большинстве случаев не требуется дополнительного обмена. Дополнительный обмен требуется тогда, когда исчерпается содержимое 49 блоков. У нас получается хорошая буферизация, которая сокращает накладные расходы ОС.

Список свободных ИД. Это буфер, состоящий из 100 элементов. В нем находится информация о 100 номерах ИД, которые свободны в данный момент. Соответственно, когда нужен новый ИД, то его номер берется из списка свободных ИД, если номер освобождается, то заносится в этот массив. Если же массив переполнен, а освобождается 101 элемент, то это никуда не записывается. Если список ИД переполняется, то система “пробегает” по списку и формирует содержимое этого буфера заново.

В ситуации, когда нужно создать файл и нужен новый ИД, а в массиве нет ни одного элемента - запускается процесс поиска нового ИД, и он ничего не находит. Тогда возможны две ситуации:


    1. Больше нет свободных блоков для файлов;

    2. Нет больше новых ИД.
Вот информация о суперблоке. Какие можно сделать выводы и замечания?

    • суперблок всегда находится в ОЗУ;

    • все операции по освобождению блоков, занятию блоков файлов, по занятию и освобождению ИД происходят в ОЗУ (минимизация обменов с диском). Если же содержимое суперблока не записать на диск и выключить питание, то возникнут проблемы (несоответствие реального состояния файловой системы и содержимого суперблока). Но это уже требование к надежности аппаратуры системы.

Лекция 8

Индексные Дескрипторы

Рассмотрим подробнее Индексные Дескрипторы. ^ ИД - это объект Unix, который ставится во взаимнооднозначное соответствие с содержимым файла. То есть для каждого ИД существует только одно содержимое и наоборот, за исключением лишь той ситуации, когда файл ассоциирован с каким-либо внешним устройством. Напомним содержимое ИД:


    • поле, определяющее тип файла (каталоги и все остальные файлы);

    • код привилегии/защиты;

    • количество ссылок к данному ИД из всевозможных каталогов файловой системы;

    • (нулевое значение означает свободу ИД)

    • длина файла в байтах;

    • даты и времена (время последней записи, дата создания и т.д.);

    • поле адресации блоков файла.
Как видно - в ИД нет имени файла. Давайте посмотрим, как организована адресация блоков, в которых размещается файл.

В поле адресации находятся номера первых десяти блоков файла, то есть если файл небольшой, то вся информация о размещении данных файла находится непосредственно в ИД. Если файл превышает десять блоков, то начинает работать некая списочная структура, а именно, 11й элемент поля адресации содержит номер блока из пространства блоков файлов, в которых размещены 128 ссылок на блоки данного файла. В том случае, если файл еще больше - то используется 12й элемент поля адресации. Сутьего в следующем - он содержит номер блока, в котором содержится 128 записей о номерах блоках, где каждый блок содержит 128 номеров блоков файловой системы. А если файл еще больше, то используется 13 элемент - где глубина вложенности списка увеличена еще на единицу.

Таким образом мы можем получить файл размером (10+128+128 2 +128 3)*512.

Если мы зададим вопрос - зачем все это надо (таблицы свободных блоков, ИД и т.д.), то вспомним, что мы рассматриваем взаимосвязь между аппаратными и программными средствами вычислительной системы, а в данном случае подобное устройство файловой системы позволяет сильно сократить количество реальных обменов с ВЗУ, причем эшелонированная буферизация в ОС Unix делает число этих обменов еще меньше.

Рассмотрим следующую область - область сохранения. На схеме она изображена сразу за блоками файлов. На самом же деле она может размещаться по-разному: перед блоками файлов, в каком-нибудь файле или еще где-нибудь, например, на другом ЗУ. Все это зависит от конкретной реализации системы.

В область сохранения происходит откачка процессов, она же используется для оптимизации запуска наиболее часто запускающихся процессов (использование так называемого T-бита файла).

Мы с вами рассмотрели структуру файловой системы и ее организацию на системном устройстве. Эта структура и алгоритмы работы с ней достаточно простые, это сделано для того, чтобы накладные расходы, связанные с функционированием системы, не выходили за пределы разумного.

Элементы файловой системы:

Каталоги

Мы говорили, что вся информация в Unix размещается в файлах. Нету каких-то специальных таблиц, которые размещены вне файловой системы и используются системой, за исключением тех таблиц, которые создает ОС во время работы в пространстве оперативной памяти.

^ Каталог с точки зрения ОС - это файл, обычный файл, в котором размещены данные о всех файлах, которые принадлежат каталогу.

Мы говорим, что в каталоге “А” содержатся файлы: “B”, “C” и “D” - из которых “В” и “С” могут быть как файлами, так и каталогами, а “D” - заведомо каталог.

Каталог имеет следующую структуру. Он состоит из элементов, объединяющих в себе два поля - номер ИД и имя файла:

Каталог = { {ИД, Имя}, {ИД,Имя}, ..., {ИД, Имя}}

Что есть номер ИД? - это порядковый номер элемента в списке индексных дескрипторов. Так, первый элемент этого списка - ИД#1 принадлежит корневому каталогу “.”.

В общем случае, в каталоге могут неоднократно встречаться записи, ссылающиеся на один и тот же ИД, но в каталоге не могут встречаться записи с одинаковыми именами. То есть с содержимым файла может быть связано произвольное количество имен. При создании каталога в нем всегда создаются две записи:

{ИД_самого_каталога, “.”} и {ИД_родительского_каталога, “..”}

Так на картинке файл “А” имеет ИД#7, “D” - ИД#5, “F” - ИД#10, “G” - ИД#101. В этом случае файл-каталог D будет иметь следующее содержимое:

{{ 5, “.” },

(Для корневого каталога родитель ссылается на него же самого.)

Чем отличается файл-каталог от обычного файла? Он отличается полем типа в индексном дескрипторе.

Давайте посмотрим, как схематично могут использоваться полные имена и ссылки на каталоги. В системе в каждый момент времени определен для пользователя текущий каталог. То есть каталог, полное имя которого подставляется ко всем файлам, имя которых не начинается с символа “/”. Если текущий каталог “D”, то можно говорить просто о файле “F” или файле “G”, если же текущий каталог “D”, а требуется добраться до файла “B”, то оперировать просто с именем“B” нельзя, так как он не принадлежит каталогу “D”, файл “B” можно достать, указав его полное имя от корня, либо использовать специальный файл “..”, в этом случае файл “B” будет иметь имя: “../B”. Если при открытии мы ссылаемся на “..”

Для того, чтобы в этом случае открыть файл “B”, придется выполнить ряд косвенных операций - взять ИД родитель, и по нему выбирается содержимое файла-каталога “А”, в “А” мы выбираем строку с именем “B” и определяем его ИД. Эта процедура достаточно трудоемка, но так как открытие и закрытие файлов происходит достаточно редко, то “криминала” в этом никакого нету.

За счет такой организации каталогов у нас содержимое файла разорвано с его именем. Имя может быть определено неоднозначно.

Так как с одним файлом может ассоциировано несколько имен, то можно говорить о том, что этот файл может быть одновременно открыт несколькими процессами (вообще говоря, имея одно имя мы тоже можем открыть этот файл из нескольких процессов, суть проблемы от этого уточнения не изменяется). Как организуется синхронизация в этом случае? Как мы увидим позже, здесь все решается корректно.

Файлы устройств

Эта разновидность файлов характеризуется типом и их интерпретация происходит следующим образом. В принципе, содержимого у файлов устройств нету, то есть это лишь ИД и имя, которое с ним ассоциировано. В ИД указывается информация о том, какой тип устройства ассоциирован с этим файлом, соответственно, система Unix все устройства подразделяет на два типа: байт- и блок-ориентированные. Байт-ориентированные устройства - это те устройства, обмен с которыми происходит по байтам (например, клавиатура), блок-ориентированные - это такие устройства, обмен с которыми происходит блоками. В ИД имеется поле, указывающее эту характеристику, там же имеется поле, определяющее номер драйвера, связанного с этим устройством. В системе каждый драйвер связан с конкретным одним устройством, но у устройства может быть несколько драйверов. Это поле, определяющее номер драйвера, на самом деле есть номер в таблице драйверов соответствующего класса устройств (имеются две таблицы - для блок- и байт- устройств). Также в ИД существует некоторый цифровой параметр, который может быть передан драйверу в качестве параметра, уточняющего информацию о работе.

Это то, что можно сказать о специальных файлах, связанных с внешними устройствами.

Обмен данными с файлами

Следующее из системной организации файловой системы - это организация обменом данными с файлом. Определим понятия, связанные с низкоуровневым вводом/выводом. В Unix определены специальные функции, которые называются системными вызовами. Эти вызовы осуществляют непосредственное обращение к ОС, они выполняют некоторые системные функции. По употреблению они практически не отличаются от использования библиотечных функций, тогда как по реализации и действии их отличие достаточно существенное. Библиотечная функция будет загружена в тело процесса, а системный вызов сразу передает управление ОС, и последняя выполняет заказанное действие. В Unix для обеспечения низкоуровневого (путем системных вызовов) ввода-вывода имеется набор этих функций:

open(...) - для работы с содержимым файла процесс должен зарегистрировать в системе этот факт, параметрами этой функции являются строка, содержащая имя файла и атрибуты на режим работы с файлом (только чтение, чтение-запись и т.п.), а возвращает эта функция некоторое число, которое называется файловым дескриптором (ФД). В теле процесса пользователя, а также данных, ассоциированных с этим процессом, размещается некая служебная информация. В частности, размещается таблица файловых дескрипторов. Она, как и все таблицы в Unix - позиционна, то есть номер строки в таблице соответствует ФД с этим номером. С ФД ассоциировано имя файла и прочие атрибуты. Нумерация ФД - прерогатива процесса, то есть ФД уникальны в пределах одного процесса.

Количество одновременно открытых файлов (точнее, максимальное количество ФД, ассоциированных с файлами) для процесса регламентируется системой.

Итак, функция open(...) - открытие существующего файла.

creat(...) - это функция открытия нового файла, ее параметрами служат: имя файла и некоторые параметры открытия, также как и у open.

read(...)/write(...) - их параметрами являются номер ФД и некоторые параметры доступа. Эти функции служат для чтение/записи из или в файл.

close(...) - завершение работы с файлом. После выполнения этой функции ФД этого файла освобождается.

Все это системные вызовы. Также в Unix можно осуществлять ввод-вывод через библиотечные функции (например, fopen, fread, fwrite, fclose, ...).

Рассмотрим организацию обмена с системной точки зрения в Unix.

При организации обмена система подразделяет все данные на две категории - первая, это данные, ассоциированные с процессом пользователя, и данные, ассоциированные с ОС.

Первая таблица данных, связанных с ОС - это таблица индексных дескрипторов открытых файлов (ТИДОФ), эта таблица содержит записи, каждая из которых содержит копию ИД для каждого открытого в системе файла. Через копию ИД мы осуществляем доступ к блокам файла. Каждая из этих записей содержитполе, характеризующее количество открытых файлов в системе, использующих данные ИД. То есть, если мы открываем один и тот же файлов от имени двух процессов, то запись в ТИДОФ создается одна, но каждое открытие этого ИД увеличивает счетчик на единицу.

Следующее. Таблица файлов - эта таблица содержит информацию об имени открытого файла и имеет ссылку на ИД данного файла в ТИДОФ.

Подробнее эта схема будет рассмотрена на следующей

Автономные ФС. Объединение ФС. Монтирование .

Пользователи обращаются к файлам по символьным именам. Однако способности человеческой памяти ограничивают количество имен объектов, к которым пользователь может обращаться по имени. Иерархическая организация пространства имен позволяет значительно расширить эти границы . Именно поэтому большинство файловых систем имеет иерархическую структуру, в которой уровни создаются за счет того, что каталог более низкого уровня может входить в каталог более высокого уровня.

Рис. Иерархия файловых систем

Мощные же компьютеры, как правило, оснащены большим количеством дисковых накопителей, на которые устанавливаются пакеты дисков. Одно физическое устройство с помощью средств ОС может быть представлено в виде нескольких логических устройств, путем разбиения дискового пространства на разделы. Возникает вопрос, каким образом организовать хранение файлов в системе, имеющей несколько устройств внешней памяти?

    На каждом из устройств размещается авто­номная файловая система, то есть файлы, находящиеся на этом устройстве, описы­ваются деревом каталогов, никак не связанным с деревьями каталогов на других устройствах. В таком случае для однозначной идентификации файла пользова­тель наряду с составным символьным именем файла должен указывать иденти­фикатор логического устройства. (система MS-DOS, в которой полное имя файла включает буквенный идентификатор логического диска: например, A:\privat\letter\uni\let1.doc.)

    организация хранения файлов, при которой пользователю предоставляется возможность объединять файловые системы, на­ходящиеся на разных устройствах, в единую файловую систему, описываемую единым деревом каталогов. Такая операция называется монтированием .

Рассмот­рим, как осуществляется эта операция на примере ОС UNIX. Среди всех имеющихся в системе логических дисковых устройств операционная система выделяет одно устройство, называемое системным. Пусть имеются две файловые системы, расположенные на разных логических дисках (рис. 4), при­чем один из дисков является системным. Файловая система, расположенная на системном диске, назначается корневой. Для связи иерархий файлов в корневой файловой системе выбирается некото­рый существующий каталог, в данном примере - каталог man. После выполне­ния монтирования выбранный каталог man становится корневым каталогом вто­рой файловой системы. Через этот каталог монтируемая файловая система подсоединяется как поддерево к общему дереву (рис. 5). После монтирования общей файловой системы для пользователя нет логической разницы между корневой и смонтированной файловыми системами, в частности именование файлов производится так же, как если бы она с самого начала была единой.

Рис. Общая файловая система после монтирования

1.7. Логическая организация файла

В общем случае данные, содержащиеся в файле, имеют некую логическую структуру. Поддержание структуры данных может быть либо целиком возложено на приложение, либо в той или иной степени эту работу может взять на себя файловая система.

Структурированный и неструктурированный файл

В первом случае, когда все действия, связанные со структуризацией и интерпретацией содержимого файла целиком относятся к ведению приложения , файл представляется ФС неструктурированной последовательностью данных. Прило­жение формулирует запросы к файловой системе на ввод-вывод, используя об­щие для всех приложений системные средства, например, указывая смещение от начала файла и количество байт, которые необходимо считать или записать. Поступивший к приложению поток байт интерпретируется в соответствии с за­ложенной в программе логикой. Например, компилятор генерирует, а редактор связей воспринимает вполне определенный формат объектного модуля програм­мы. При этом формат файла, в котором хранится объектный модуль, известен только этим программам. Подчеркнем, что интерпретация данных никак не свя­зана с действительным способом их хранения в файловой системе. Модель файла, в соответствии с которой содержимое файла представляется не­структурированной последовательностью (потоком) байт, стала популярной вместе с ОС UNIX, а теперь она широко используется в большинстве современных ОС, в том числе в MS-DOS, Windows NT/2000, NetWare. Неструктурированная модель файла позволяет легко организовать разделение файла между несколькими приложениями: разные приложения могут по-своему структурировать и интерпретировать данные, содержащиеся в файле.

Другая модель файла, которая применялась в ОС OS/360, DEC RSX и VMS, а в настоящее время используется достаточно редко, – это структурированный файл. В этом случае поддержание структуры файла поручается файловой системе. Файловая система видит файл как упорядоченную последовательность логических записей. Приложение может обращаться к ФС с запросами на ввод-вывод на уровне записей, например «считать запись 25 из файла FILE.DOC». ФС должна обладать информацией о структуре файла, достаточной для того, чтобы выделить любую запись. ФС предоставляет приложению доступ к записи, а вся дальнейшая обработка данных, содержащихся в этой записи, выполняется приложением. Развитием этого подхода стали системы управления базами данных (СУБД), которые поддерживают не только сложную структуру данных, но и взаимосвязи между ними .

Структуризация файла

Логическая запись является наименьшим элементом данных, которым может оперировать программист при организации обмена с внешним устройством. Даже если физический обмен с устройством осуществляется большими единицами, операционная система должна обеспечивать программисту доступ к отдельной логической записи. Файловая система может использовать два способа доступа к логическим записям:

Способы структуризации :

    Размер записи фиксирован в пределах файла, а записи в различных файлах, принадлежащих одной и той же файловой системе, могут иметь различный размер. В таком случае доступ к n-й записи файла осуществляется либо путем последовательного чтения (n-1) предшествующих записей, либо прямо по адресу, вычисленному по ее порядковому номеру. Например, если L - длина записи, то начальный адрес n-й записи равен Lxn.

    Представление данных в виде последовательности записей, размер которых изменяется в пределах одного файла. Для поиска нужной записи система должна последовательно считать все предшествующие записи. Вычислить адрес нужной записи по ее номеру при такой логической организации файла невозможно, а следовательно, не может быть применен более эффективный метод прямого доступа..

    Индексированные файлы, они допускают более быстрый прямой доступ к отдельной логической записи. Записи имеют одно или более ключевых (индексных) полей и могут адресоваться путем указания значений этих полей. Для быстрого поиска данных в индексированном файле предусматривается специальная индексная таблица, в которой значениям ключевых полей ставится в соответствие адрес внешней памяти. Этот адрес может указывать либо непосредственно на искомую запись, либо на некоторую область внешней памяти, занимаемую несколькими записями, в число которых входит искомая запись. Ведение индексных таб­лиц берет на себя файловая система. Понятно, что записи в индексированных файлах могут иметь произвольную длину.

Все вышесказанное в большей степени относится к обычным файлам , которые могут быть как структурированными, так и неструктурированными. Что же касается других типов файлов, то они обладают определенной структурой, известной файловой системе. Например, файловая, система должна понимать структуру данных, хранящихся в файле-каталоге или файле типа «символьная связь ».

Файлы и файловая система

Все программы и данные хранятся в долговременной (внешней) памяти компьютера в виде файлов.

Файл - это определенное количество информации (программа или данные), имеющее имя и хранящееся в долговременной (внешней) памяти.

Имя файла. Имя файла состоит из двух частей, разделенных точкой: собственно имя файла и расширение, определяющее его тип (программа, данные и так далее). Собственно имя файлу дает пользователь, а тип файла обычно задается программой автоматически при его создании (табл. 4.2).

В различных операционных системах существуют различные форматы имен файлов. В операционной системе MS-DOS собственно имя файла должно содержать не более 8 букв латинского алфавита, цифр и некоторых специальных знаков, а расширение состоит из трех латинских букв, например: proba.txt

В операционной системе Windows имя файла может иметь длину до 255 символов, причем можно использовать русский алфавит, например: Единицы измерения информации.doc


Файловая система. На каждом носителе информации (гибком, жестком или лазерном диске) может храниться большое количество файлов. Порядок хранения файлов на диске определяется используемой файловой системой.

Каждый диск разбивается на две области: область хранения файлов и каталог. Каталог содержит имя файла и указание на начало его размещения на диске. Если провести аналогию диска с книгой, то область хранения файлов соответствует ее содержанию, а каталог - оглавлению. Причем книга состоит из страниц, а диск - из секторов.

Для дисков с небольшим количеством файлов (до нескольких десятков) может использоваться одноуровневая файловая система , когда каталог (оглавление диска) представляет собой линейную последовательность имен файлов (табл. 4.3). Такой каталог можно сравнить с оглавлением детской книжки, которое содержит только названия отдельных рассказов.

Если на диске хранятся сотни и тысячи файлов, то для удобства поиска используется многоуровневая иерархическая файловая система , которая имеет древовидную структуру. Такую иерархическую систему можно сравнить, например, с оглавлением данного учебника, которое представляет собой иерархическую систему разделов, глав, параграфов и пунктов.

Начальный, корневой каталог содержит вложенные каталоги 1-го уровня, в свою очередь, каждый из последних может содержать вложенные каталоги 2-го уровня и так далее. Необходимо отметить, что в каталогах всех уровней могут храниться и файлы.

Например, в корневом каталоге могут находиться два вложенных каталога 1-го уровня (Каталог_1, Каталог_2) и один файл (Файл_1). В свою очередь, в каталоге 1-го уровня (Каталог_1) находятся два вложенных каталога второго уровня (Каталог_1.1 и Каталог_1.2) и один файл (Файл_1.1) - рис. 4.21.

Файловая система - это система хранения файлов и организации каталогов.

Рассмотрим иерархическую файловую систему на конкретном примере. Каждый диск имеет логическое имя (А:, В: - гибкие диски, С:, D:, Е: и так далее - жесткие и лазерные диски).

Пусть в корневом каталоге диска С: имеются два каталога 1-го уровня (GAMES, TEXT), а в каталоге GAMES один каталог 2-го уровня (CHESS). При этом в каталоге TEXT имеется файл proba.txt, а в каталоге CHESS - файл chess.exe (рис. 4.22).

Путь к файлу. Как найти имеющиеся файлы (chess.exe, proba.txt) в данной иерархической файловой системе? Для этого необходимо указать путь к файлу. В путь к файлу входят записываемые через разделитель "\" логическое имя диска и последовательность имен вложенных друг в друга каталогов, в последнем из которых содержится нужный файл. Пути к вышеперечисленным файлам можно записать следующим образом:

Путь к файлу вместе с именем файла называют иногда полным именем файла .

Пример полного имени файла:

С \GAMES\CHESS\chess.exe

Представление файловой системы с помощью графического интерфейса. Иерархическая файловая система MS-DOS, содержащая каталоги и файлы, представлена в операционной системе Windows с помощью графического интерфейса в форме иерархической системы папок и документов. Папка в Windows является аналогом каталога MS-DOS

Однако иерархическая структура этих систем несколько различается. В иерархической файловой системе MS-DOS вершиной иерархии объектов является корневой каталог диска, который можно сравнить со стволом дерева, на котором растут ветки (подкаталоги), а на ветках располагаются листья (файлы).

В Windows на вершине иерархии папок находится папка Рабочий стол . Следующий уровень представлен папками Мой компьютер, Корзина и Сетевое окружение (если компьютер подключен к локальной сети) - рис. 4.23.

2. Выбрав один из пунктов меню Вид (Крупные значки, Мелкие значки, Список, Таблица) , можно настроить форму представления содержимого папки.

Папка Сетевое окружение содержит папки всех компьютеров, подключенных в данный момент к локальной сети.

Папка Корзина временно содержит все удаленные папки и файлы. При необходимости удаленные и хранящиеся в Корзине папки и документы можно восстановить.

3. Для окончательного удаления файлов необходимо ввести команду [Файл-Очистить корзину].

Операции над файлами. В процессе работы на компьютере наиболее часто над файлами производятся следующие операции:

  • копирование (копия файла помещается в другой каталог);
  • перемещение (сам файл перемещается в другой каталог);
  • удаление (запись о файле удаляется из каталога);
  • переименование (изменяется имя файла).

Графический интерфейс Windows позволяет проводить операции над файлами с помощью мыши с использованием метода Drag&Drop (перетащи и оставь). Существуют также специализированные приложения для работы с файлами, так называемые файловые менеджеры : Norton Commander, Windows Commander, Проводник и др.

В некоторых случаях возникает необходимость работать с интерфейсом командной строки. В Windows предусмотрен режим работы с интерфейсом командной строки MS-DOS.

Интерфейс командной строки

1. Ввести команду [Программы-Сеанс MS-DOS]. Появится окно приложения Сеанс MS-DOS .

В ответ на приглашение системы можно вводить команды MS-DOS с клавиатуры, в том числе:

  • команды работы с файлами (copy, del, rename и др.);
  • команды работы с каталогами (dir, mkdir, chdir и др.);
  • команды работы с дисками (format, defrag и др.).

2. Существуют десятки команд MS-DOS, при этом каждая команда имеет свой формат и параметры, запомнить которые достаточно трудно. Для того чтобы получить справочную информацию по команде, необходимо после имени команды ввести ключ /?.

Например, для получения справки по команде format в ответ на приглашение системы необходимо ввести: С:\WINDOWS>format/?


Вопросы для размышления

1. Какой элемент является вершиной иерархии в файловой системе MS-DOS? В графическом интерфейсе Windows?

Практические задания

4.11. Осуществить копирование файлов с использованием интерфейса командной строки и файлового менеджера.

4.12. Ознакомиться с объемом дисков вашего компьютера, а также объемами занятого и свободного пространства.

4.13. Ознакомиться с форматом команды dir. Просмотреть корневой каталог диска С.

Файловые системы поддерживают несколько функционально различных типов файлов, в число которых, как правило, входят обычные файлы, файлы-каталоги, специальные файлы, именованные конвейеры, отображаемые в память файлы и другие.

Обычные файлы, или просто файлы, содержат информацию произвольного характера, которую заносит в них пользователь или которая образуется в результате работы системных и пользовательских программ. Большинство современных операционных систем (например, UNIX, Windows, OS/2) никак не ограничивает и не контролирует содержимое и структуру обычного файла. Содержание обычного файла определяется приложением, которое с ним работает. Например, текстовый редактор создает текстовые файлы, состоящие из строк символов, представленных в каком-либо коде. Это могут быть документы, исходные тексты программ и т. п. Текстовые файлы можно прочитать на экране и распечатать на принтере. Двоичные файлы не используют коды символов, они часто имеют сложную внутреннюю структуру, например исполняемый код программы или архивный файл. Все операционные системы должны уметь распознавать хотя бы один тип файлов - их собственные исполняемые файлы.

Каталоги - это особый тип файлов, которые содержат системную справочную информацию о наборе файлов, сгруппированных пользователями по какому-либо неформальному признаку (например, в одну группу объединяются файлы, содержащие документы одного договора, или файлы, составляющие один программный пакет). Во многих операционных системах в каталог могут входить файлы любых типов, в том числе другие каталоги, за счет чего образуется древовидная структура, удобная для поиска. Каталоги устанавливают соответствие между именами файлов и их характеристиками, используемыми файловой системой для управления файлами. В число таких характеристик входит, в частности, информация (или указатель на другую структуру, содержащую эти данные) о типе файла и расположении его на диске, правах доступа к файлу и датах его создания и модификации. Во всех остальных отношениях каталоги рассматриваются файловой системой как обычные файлы.

Специальные файлы - это фиктивные файлы, ассоциированные с устройствами ввода-вывода, которые используются для унификации механизма доступа к файлам и внешним устройствам. Специальные файлы позволяют пользователю выполнять операции ввода-вывода посредством обычных команд записи в файл или чтения из файла. Эти команды обрабатываются сначала программами файловой системы, а затем на некотором этапе выполнения запроса преобразуются операционной системой в команды управления соответствующим устройством.

Современные файловые системы поддерживают и другие типы файлов, такие как символьные связи, именованные конвейеры, отображаемые в память файлы. Они будут рассмотрены позже.

Иерархическая структура файловой системы

Пользователи обращаются к файлам по символьным именам. Однако способности человеческой памяти ограничивают количество имен объектов, к которым пользователь может обращаться по имени. Иерархическая организация пространства имен позволяет значительно расширить эти границы. Именно поэтому большинство файловых систем имеет иерархическую структуру, в которой уровни создаются за счет того, что каталог более низкого уровня может входить в каталог более высокого уровня (рис. 1).

Рис. 1. Иерархия файловых систем

Граф, описывающий иерархию каталогов, может быть деревом или сетью. Каталоги образуют дерево, если файлу разрешено входить только в один каталог (рис. 1, б), и сеть - если файл может входить сразу в несколько каталогов (рис. 1, в). Например, в MS-DOS и Windows каталоги образуют древовидную структуру, а в UNIX - сетевую. В древовидной структуре каждый файл является листом. Каталог самого верхнего уровня называется корневым каталогом, или корнем (root).

При такой организации пользователь освобожден от запоминания имен всех файлов, ему достаточно примерно представлять, к какой группе может быть отнесен тот или иной файл, чтобы путем последовательного просмотра каталогов найти его. Иерархическая структура удобна для многопользовательской работы: каждый пользователь со своими файлами локализуется в своем каталоге или поддереве каталогов, и вместе с тем все файлы в системе логически связаны.

Частным случаем иерархической структуры является одноуровневая организация, когда все файлы входят в один каталог (рис. 1, а).