Теоретический материал. Доказательство формулы производной сложной функции Полная производная сложной функции

1°. Случай одной независимой переменной . Если z=f(x,y) есть дифференцируемая функция аргументов х и у, которые в свою очередь являются дифференцируемыми функциями независимой переменной t : , то производная сложной функции может быть вычислена по формуле

Пример. Найти , если , где .

Решение. По формуле (1) имеем:

Пример . Найти частную производную и полную производную , если .

Решение. .

На основании формулы (2) получаем .

2°. Случай нескольких независимых переменных.

Пусть z = f (x ; y ) - функция двух переменных х и у, каждая из которых является функцией независимой переменной t : х = x (t ), у = y (t ). В этом случае функция z = f (x (t ); y (t )) является сложной функцией одной независимой переменной t; переменные х и у - промежуточные переменные.

Теорема . Если z == f (x ; у) - дифференцируемая в точке М(х;у) D функция и х = x (t ) и у =y (t ) - дифференцируемые функции независимой переменной t, то производная сложной функции z (t ) == f (x (t ); y (t )) вычисляется по формуле

Частный случай: z = f (x ; у), где у = у(х), т.е. z = f (x ; y (x )) - сложная функция одной независимой переменной х. Этот случай сводится к предыдущему, причем роль переменной t играет х. Согласно формуле (3) имеем:

.

Последняя формула носит название формулы полной производной.

Общий случай: z = f (x ; y ), где х = x (u ; v ), y = y (u ; v ). Тогда z = f { x (u ; v ); y (u ; v )) - сложная функция независимых переменных и и v . Ее частные производные и можно найти, используя формулу (3) следующим образом. Зафиксировав v, заменяем в ней , соответствующими частными производными

Таким образом, производная сложной функции (z ) по каждой независимой переменной и v) равна сумме произведений частных производных этой функции (z) по ее промежуточным переменным (x и у) на их производные по соответствующей независимой переменной (u и v).

Во всех рассмотренных случаях справедлива формула

(свойство инвариантности полного дифференциала).

Пример. Найти и , если z =f (x ,y ), где x =uv , .

Решение. Применяя формулы (4) и (5), получим:

Пример. Показать, что функция удовлетворяет уравнению .

Решение. Функция зависит от х и у через промежуточный аргумент , поэтому

Подставив частные производные в левую часть уравнения, будем иметь:

Т. е. функция z удовлетворяет данному уравнению.

Производная в данном направлении и градиент функции

1°. Производная функции в данном направлении . Производной функции z=f (x,y) в данном направлении называется , где и - значения функции в точках и . Если функция z дифференцируема, то справедлива формула

где - углы между направлением l и соответствующими координатными осями. Производная в данном направлении характеризует скорость изменения функции в этом направлении.

Пример. Найти производную функции z = 2х 2 - Зу 2 в точке P (1; 0) в направлении, составляющем с осью ОХ угол в 120°.

Решение. Найдем частные производные данной функции и их значения в точке P .

Частные производные применяются в заданиях с функциями нескольких переменных. Правила нахождения точно такие же как и для функций одной переменной, с разницей лишь в том, что одну из переменных нужно считать в момент дифференцирования константой (постоянным числом).

Формула

Частные производные для функции двух переменных $ z(x,y) $ записываются в следующем виде $ z"_x, z"_y $ и находятся по формулам:

Частные производные первого порядка

$$ z"_x = \frac{\partial z}{\partial x} $$

$$ z"_y = \frac{\partial z}{\partial y} $$

Частные производные второго порядка

$$ z""_{xx} = \frac{\partial^2 z}{\partial x \partial x} $$

$$ z""_{yy} = \frac{\partial^2 z}{\partial y \partial y} $$

Смешанная производная

$$ z""_{xy} = \frac{\partial^2 z}{\partial x \partial y} $$

$$ z""_{yx} = \frac{\partial^2 z}{\partial y \partial x} $$

Частная производная сложной функции

а) Пусть $ z (t) = f(x(t), y(t)) $, тогда производная сложной функции определяется по формуле:

$$ \frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} $$

б) Пусть $ z (u,v) = z(x(u,v),y(u,v)) $, тогда частные производные функции находится по формуле:

$$ \frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} $$

$$ \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} $$

Частные производные неявно заданной функции

а) Пусть $ F(x,y(x)) = 0 $, тогда $$ \frac{dy}{dx} = -\frac{f"_x}{f"_y} $$

б) Пусть $ F(x,y,z)=0 $, тогда $$ z"_x = - \frac{F"_x}{F"_z}; z"_y = - \frac{F"_y}{F"_z} $$

Примеры решений

Пример 1
Найти частные производные первого порядка $ z (x,y) = x^2 - y^2 + 4xy + 10 $
Решение

Для нахождения частной производной по $ x $ будем считать $ y $ постоянной величиной (числом):

$$ z"_x = (x^2-y^2+4xy+10)"_x = 2x - 0 + 4y + 0 = 2x+4y $$

Для нахождения частной производной функции по $ y $ определим $ y $ константой:

$$ z"_y = (x^2-y^2+4xy+10)"_y = -2y+4x $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ z"_x = 2x+4y; z"_y = -2y+4x $$
Пример 2
Найти частные производные функции второго порядка $ z = e^{xy} $
Решение

Сперва нужно найти первый производные, а затем зная их можно найти производные второго порядка.

Полагаем $ y $ константой:

$$ z"_x = (e^{xy})"_x = e^{xy} \cdot (xy)"_x = ye^{xy} $$

Положим теперь $ x $ постоянной величиной:

$$ z"_y = (e^{xy})"_y = e^{xy} \cdot (xy)"_y = xe^{xy} $$

Зная первые производные аналогично находим вторые.

Устанавливаем $ y $ постоянной:

$$ z""_{xx} = (z"_x)"_x = (ye^{xy})"_x = (y)"_x e^{xy} + y(e^{xy})"_x = 0 + ye^{xy}\cdot (xy)"_x = y^2e^{xy} $$

Задаем $ x $ постоянной:

$$ z""_{yy} = (z"_y)"_y = (xe^{xy})"_y = (x)"_y e^{xy} + x(e^{xy})"_y = 0 + x^2e^{xy} = x^2e^{xy} $$

Теперь осталось найти смешанную производную. Можно продифференцировать $ z"_x $ по $ y $, а можно $ z"_y $ по $ x $, так как по теореме $ z""_{xy} = z""_{yx} $

$$ z""_{xy} = (z"_x)"_y = (ye^{xy})"_y = (y)"_y e^{xy} + y (e^{xy})"_y = ye^{xy}\cdot (xy)"_y = yxe^{xy} $$

Ответ
$$ z"_x = ye^{xy}; z"_y = xe^{xy}; z""_{xy} = yxe^{xy} $$
Пример 4
Пусть $ 3x^3z - 2z^2 + 3yz^2-4x+z-5 = 0 $ задаёт неявную функцию $ F(x,y,z) = 0 $. Найти частные производные первого порядка.
Решение

Записываем функцию в формате: $ F(x,y,z) = 3x^3z - 2z^2 + 3yz^2-4x+z-5 = 0 $ и находим производные:

$$ z"_x (y,z - const) = (x^3 z - 2z^2 + 3yz^2-4x+z-5)"_x = 3 x^2 z - 4 $$

$$ z"_y (x,y - const) = (x^3 z - 2z^2 + 3yz^2-4x+z-5)"_y = 3z^2 $$

Ответ
$$ z"_x = 3x^2 z - 4; z"_y = 3z^2; $$

Пример. Найти , если , где .

Решение. По формуле (1) имеем:

Пример. Найти частную производную и полную производную , если .

Решение. .

На основании формулы (2) получаем .

2°. Случай нескольких независимых переменных.

Пусть z = f(x;y) - функция двух переменных х и у, каждая из которых является функцией

независимой переменной t: х = x(t), у = y(t). В этом случае функция z=f(x(t);y(t)) является

сложной функцией одной независимой переменной t; переменные х и у - промежуточные переменные.

Теорема . Если z == f (x; у) - дифференцируемая в точке М(х;у) D функция

и х = x(t) и у =y(t) - дифференцируемые функции независимой переменной t,

то производная сложной функции z(t) == f (x(t);y(t)) вычисляется по формуле

(3)

Частный случай: z = f(x; у), где у = у(х), т.е. z = f(x;y(x)) - сложная функция одной

независимой переменной х. Этот случай сводится к предыдущему, причем роль переменной

t играет х. Согласно формуле (3) имеем:

.

Последняя формула носит название формулы полной производной.

Общий случай: z = f(x;y), где х = x(u;v), y=y(u;v). Тогда z = f{x(u;v);y(u;v)) - сложная

функция независимых переменных и и v. Ее частные производные и можно найти,

используя формулу (3) следующим образом. Зафиксировав v, заменяем в ней ,

соответствующими частными производными

Таким образом, производная сложной функции (z) по каждой независимой переменной и v)

равна сумме произведений частных производных этой функции (z) по ее промежуточным

переменным (x и у) на их производные по соответствующей независимой переменной (u и v).

Во всех рассмотренных случаях справедлива формула

(свойство инвариантности полного дифференциала).

Пример. Найти и , если z=f (x,y), где x=uv, .

) мы уже неоднократно сталкивались с частными производными сложных функций наподобие и более трудными примерами. Так о чём же ещё можно рассказать?! …А всё как в жизни – нет такой сложности, которую было бы нельзя усложнить =) Но математика – на то и математика, чтобы укладывать многообразие нашего мира в строгие рамки. И иногда это удаётся сделать одним-единственным предложением:

В общем случае сложная функция имеет вид , где, по меньшей мере, одна из букв представляет собой функцию , которая может зависеть от произвольного количества переменных.

Минимальный и самый простой вариант – это давно знакомая сложная функция одной переменной, производную которой мы научились находить в прошлом семестре. Навыками дифференцирования функций вы тоже обладаете (взгляните на те же функции ) .

Таким образом, сейчас нас будет интересовать как раз случай . По причине великого разнообразия сложных функций общие формулы их производных имеют весьма громоздкий и плохо усваиваемый вид. В этой связи я ограничусь конкретными примерами, из которых вы сможете понять общий принцип нахождения этих производных:

Пример 1

Дана сложная функция , где . Требуется:
1) найти её производную и записать полный дифференциал 1-го порядка;
2) вычислить значение производной при .

Решение : во-первых, разберёмся с самой функцией. Нам предложена функция, зависящая от и , которые в свою очередь являются функциями одной переменной:

Во-вторых, обратим пристальное внимание на само задание – от нас требуется найти производнУЮ , то есть, речь идёт вовсе не о частных производных , которые мы привыкли находить! Так как функция фактически зависит только от одной переменной, то под словом «производная» подразумевается полная производная . Как её найти?

Первое, что приходит на ум, это прямая подстановка и дальнейшее дифференцирование. Подставим в функцию :
, после чего с искомой производной никаких проблем:

И, соответственно, полный дифференциал:

Это решение математически корректно, но маленький нюанс состоит в том, что когда задача формулируется так, как она сформулирована – такого варварства от вас никто не ожидает =) А если серьёзно, то придраться тут действительно можно. Представьте, что функция описывает полёт шмеля, а вложенные функции меняются в зависимости от температуры. Выполняя прямую подстановку , мы получаем лишь частную информацию , которая характеризует полёт, скажем, только в жаркую погоду. Более того, если человеку не сведущему в шмелях предъявить готовый результат и даже сказать, что это за функция, то он так ничего и не узнает о фундаментальном законе полёта!

Вот так вот совершенно неожиданно брат наш жужжащий помог осознать смысл и важность универсальной формулы:

Привыкайте к «двухэтажным» обозначениям производных – в рассматриваемом задании в ходу именно они. При этом следует быть очень аккуратным в записи: производные с прямыми значками «дэ» – это полные производные , а производные с округлыми значками – это частные производные . С последних и начнём:

Ну а с «хвостами» вообще всё элементарно:

Подставим найденные производные в нашу формулу:

Когда функция изначально предложена в замысловатом виде, то будет логичным (и тому дано объяснение выше!) оставить в таком же виде и результаты:

При этом в «навороченных» ответах лучше воздержаться даже от минимальных упрощений (тут, например, напрашивается убрать 3 минуса) – и вам работы меньше, и мохнатый друг доволен рецензировать задание проще.

Однако не лишней будет черновая проверка. Подставим в найденную производную и проведём упрощения:


(на последнем шаге использованы тригонометрические формулы , )

В результате получен тот же результат, что и при «варварском» методе решения.

Вычислим производную в точке . Сначала удобно выяснить «транзитные» значения (значения функций ) :

Теперь оформляем итоговые расчёты, которые в данном случае можно выполнить по-разному. Использую интересный приём, в котором 3 и 4 «этажа» упрощаются не по обычным правилам , а преобразуются как частное двух чисел:

И, конечно же, грех не проверить по более компактной записи :

Ответ :

Бывает, что задача предлагается в «полуобщем» виде:

«Найти производную функции , где »

То есть «главная» функция не дана, но её «вкладыши» вполне конкретны. Ответ следует дать в таком же стиле:

Более того, условие могут немного подшифровать:

«Найти производную функции »

В этом случае нужно самостоятельно обозначить вложенные функции какими-нибудь подходящими буквами, например, через и воспользоваться той же формулой:

К слову, о буквенных обозначениях. Я уже неоднократно призывал не «цепляться за буквы», как за спасательный круг, и сейчас это особенно актуально! Анализируя различные источники по теме, у меня вообще сложилось впечатление, что авторы «пошли вразнос» и стали безжалостно бросать студентов в бурные пучины математики =) Так что уж простите:))

Пример 2

Найти производную функции , если

Другие обозначения не должны приводить в замешательство! Каждый раз, когда вы встречаете подобное задание, нужно ответить на два простых вопроса:

1) От чего зависит «главная» функция? В данном случае функция «зет» зависит от двух функций («у» и «вэ»).

2) От каких переменных зависят вложенные функции? В данном случае оба «вкладыша» зависят только от «икса».

Таким образом, у вас не должно возникнуть трудностей, чтобы адаптировать формулу к этой задаче!

Краткое решение и ответ в конце урока.

Дополнительные примеры по первому виду можно найти в задачнике Рябушко (ИДЗ 10.1) , ну а мы берём курс на функцию трёх переменных :

Пример 3

Дана функция , где .
Вычислить производную в точке

Формула производной сложной функции , как многие догадываются, имеет родственный вид:

Решайте, раз догадались =)

На всякий случай приведу и общую формулу для функции :
, хотя на практике вы вряд ли встретите что-то длиннее Примера 3.

Кроме того, иногда приходится дифференцировать «урезанный» вариант – как правило, функцию вида либо . Оставляю вам этот вопрос для самостоятельного исследования – придумайте какую-нибудь простенькие примеры, подумайте, поэкспериментируйте и выведите укороченные формулы производных.

Если что-то осталось недопонятым, пожалуйста, неторопливо перечитайте и осмыслите первую часть урока, поскольку сейчас задача усложнится:

Пример 4

Найти частные производные сложной функции , где

Решение : данная функция имеет вид , и после прямой подстановки и мы получаем привычную функцию двух переменных:

Но такой страх не то чтобы не принято, а уже и не хочется дифференцировать =) Поэтому воспользуемся готовыми формулами. Чтобы вы быстрее уловили закономерность, я выполню некоторые пометки:

Внимательно просмотрите картинку сверху вниз и слева направо….

Сначала найдём частные производные «главной» функции:

Теперь находим «иксовые» производные «вкладышей»:

и записываем итоговую «иксовую» производную:

Аналогично с «игреком»:

и

Можно придерживаться и другого стиля – сразу найти все «хвосты» и потом записать обе производные.

Ответ :

О подстановке что-то как-то совсем не думается =) =), а вот причесать результаты немножко можно. Хотя, опять же, зачем? – только усложните проверку преподавателю.

Если потребуется, то полный дифференциал тут записывается по обычной формуле, и, кстати, как раз на данном шаге становится уместной лёгкая косметика:


Такой вот... ....гроб на колёсиках.

Ввиду популярности рассматриваемой разновидности сложной функции пара заданий для самостоятельного решения. Более простой пример в «полуобщем» виде – на понимание самой формулы;-):

Пример 5

Найти частные производные функции , где

И посложнее – с подключением техники дифференцирования:

Пример 6

Найти полный дифференциал функции , где

Нет, я вовсе не пытаюсь «отправить вас на дно» – все примеры взяты из реальных работ, и «в открытом море» вам могут попасться какие угодно буквы. В любом случае потребуется проанализировать функцию (ответив на 2 вопроса – см. выше) , представить её в общем виде и аккуратно модифицировать формулы частных производных. Возможно, сейчас немного попутаетесь, но зато поймёте сам принцип их конструирования! Ибо настоящие задачи только начинаются:)))

Пример 7

Найти частные производные и составить полный дифференциал сложной функции
, где

Решение : «главная» функция имеет вид и по-прежнему зависит от двух переменных – «икса» и «игрека». Но по сравнению с Примером 4, добавилась ещё одна вложенная функция, и поэтому формулы частных производных тоже удлиняются. Как и в том примере, для лучшего вИдения закономерности, я выделю «главные» частные производные различными цветами:

И снова – внимательно изучите запись сверху вниз и слева направо.

Так как задача сформулирована в «полуобщем» виде, то все наши труды, по существу, ограничиваются нахождением частных производных вложенных функций:

Справится первоклассник:

И даже полный дифференциал получился вполне себе симпатичный:

Я специально не стал предлагать вам какую-то конкретную функцию – чтобы лишние нагромождения не помешали хорошо разобраться в принципиальной схеме задачи.

Ответ :

Довольно часто можно встретить «разнокалиберные» вложения, например:

Здесь «главная» функция хоть и имеет вид , но всё равно зависит и от «икс», и от «игрек». Поэтому работают те же самые формулы – просто некоторые частные производные будут равны нулю. Причём, это справедливо и для функций вроде , у которых каждый «вкладыш» зависит от какой-то одной переменной.

Похожая ситуация имеет место и в двух заключительных примерах урока:

Пример 8

Найти полный дифференциал сложной функции в точке

Решение : условие сформулировано «бюджетным» образом, и мы должны сами обозначить вложенные функции. По-моему, неплохой вариант:

Во «вкладышах» присутствуют (ВНИМАНИЕ! ) ТРИ буквы – старые-добрые «икс-игрек-зет», а значит, «главная» функция фактически зависит от трёх переменных. Её можно формально переписать в виде , и частные производные в этом случае определяются следующими формулами:

Сканируем, вникаем, улавливаем….

В нашей задаче:


Пусть функция z - /(х, у) определена в некоторой области D на плоскости хОу. Возьмем внутреннюю точку (х, у) из области D и дадим х приращение Ах такое, чтобы точка (х + Ах, у) 6 D (рис.9). Величину назовем частным приращением функции z по х. Составим отношение Для данной точки (х, у) это отношение является функцией от Определение. Если при Ах -* 0 отношение ^ имеет конечный предел, то этот предел называется частной производной функции z = /(х, у) по независимой переменной х в точке (х, у) и обозначается символом jfc (или /i(x, jj), или z"x(x, Та ним образом, по определению или, чтотоже самое, Аналогично Если и - функция п независимых переменных, то Заметив, что Arz вычисляется при неизменном значении переменной у, a Atz - при неизменном значении переменной х, определения частных производных можно сформулировать так: Частные производные Геометрический смысл частных производных функции двух переменных Дифференцируемость функции нескольких переменных Необходимые условия дифференцируемости функции Достаточные условия дифференцируемсти функций нескольких переменных Полный дифференциал. Частные дифференциалы Производные сложной функции частной производной по х функции z = /(х, у) называется обычная производная этой функции по х, вычисленная в предположении, что у - постоянная; частной производной по у функции z - /(х, у) называется ее производная по у, вычисленная в предположении, что х - постоянная. Отсюда следует, что правила вычисления частных производных совпадают с правилами, доказанными для функции одной переменной. Пример. Найти частные производные функции 4 Имеем Заменами*. Из существования у функции г = /(х, у) в данной точке частных производных по всем аргументам не вытемает непрерывности функции в этой точке. Так, функция не является непрерывной в точке 0(0,0). Однако в этой точке указанная функция имеет частные производные по х и по у. Это следует из того, что /(х, 0) = 0 и /(0, у) = 0 и поэтому Геометрический смысл частных производных функции двух переменных Пусть в трехмерном пространстве поверхность S задана уравнением где f(x, у) - функция, непрерывная в некоторой области D и имеющая там частные производные по х и по у. Выясним геометрический смысл этих производных в точке Мо(хо,уо) 6 D, которой на поверхности z = f{x}y) соответствует точка f(x0}yo)). При нахождении частной производной вточке М0 мы полагаем, что z является только функцией аргумента х, тогда как аргумент у сохраняет постоянное значение у = уо, т. е. Функция fi(x) геометрически изображается кривой L, по которой поверхность S пересекается плоскостью у = у о. В силу геометрического смысла производной функции одной переменной f\(xo) = tg а, где а - угол, образованный касательной к линии L в точке JV0 с осью Ох (рис. 10). Но так что Такимобразом, частная производная ($|) равнатангенсуугла а между осью Ох и касательной в точке N0 к кривой, полученной в сечении поверхности z = /(х, у) плоскостью у Аналогично получаем, что §6. Дифференцируемость функции нескольких переменных Пусть функция z = /(х, у) определена в некоторой области D на плоскости хОу. Возьмем точку (х, у) € D и выбранным значениям х и у дадим любые приращения Ах и Ду, но такие, чтобы точка. Определение. Функция г = /(х, у) называется дифференцируемой * точке (ж, у) € 2Э, если полное прирашение этой функции, отвечающее приращениям Дх, Ду аргументов, можно представить в виде где Л и В не зависят от Дх и Д у (но вообще зависят от х и у), а а(Дх, Ду) и /?(Дх, Ду) стремятся к нулю при стремлении к нулю Дх и Ду. . Если фунмция z = /(х, у) дифференцируема в точке (х, у), то часть А Дх 4- ВДу приращения функции, линейная относительно Дх и Ду, называется полным дифференциалом этой функции в точке (х, у) и обозначается символом dz: Таним образом, Пример. Пусть г = х2 + у2. Во всякой точке (г,у) и для любых Дх и Ду имеем Здесь. тек что а и /3 стремятся к нулю при стремлении к нулю Дх и Ду. Согласно определению, данная функция дифференцируема в любой точке плоскости хОу. При этом Заметим, что в наших рассуждениях не был формально исключен тот случай, когда приращения Дх, Ду порознь или даже оба сразу равны нулю. Формулу (1) можно записать более компактно, если ввести выражение (расстояние между точками (Пользуясь им, можем написать Обозначив выражение, стоящее в скобнах, через е, будем иметь где с зависит от Дж, Ду и стремится к нулю, если Дж 0 и Ду 0, или, короче, если р 0. Формулу (1), выражающую условие дифференцируемости функции z = f{xt у) в точке (ж, у), можно теперь записать в виде Так, в приведенном выше примере 6.1. Необходимые условия дифференцируемое™ функции Теореме 4. Если функция г = /(ж, у) дифференцируема в некоторой точке, то она в этой точке непрерывна. 4 Если в точке (ж, у) фунлшя г = /(ж, у) дифференцируема, то полное приращение функции я в этой точ»«е, отвечающее приращениям Дж и Ду аргументов, можно представи ть в виде (величины Л, В для данной точки постоянны; , откуда следует, что Последнее означает, что в точке (ж, у) функция г /(ж, у) непрерывна. Теорем! б. Если функция г = /(ж, у) дифференцируема в данной точке, mo око ы.иеет в этой точке частные производные $§ и. Пусть функция z = /(х, у) дифференцируемад точке (х, у). .Тогда прираше^ Дг этой функции, отвечающее приращениям Дх, Ау аргументов, можно представить в виде (1). Взяв в равенстве (1) Дх Ф 0, Ду = 0, получим откуда Так как в правой части последнего равенства величина А не зависит от, Это означает, что в точке (х, у) существует частная производная функции г = /{х, у) по х, причем Подобными же рассуждениями убеждаемся (х, существует частная производная функции zу, причем Из теоремы следует, что Подчеркнем, что теорема 5 утверждает существование частных производных только в точке (х, у), но ничего не говорит о непрерывности их в этой точке, а также об их поведении в окрестности точки (х, у). 6.2. Достаточные условия дифференцируемое™ функций нескольких переменных Как известно, необходимым и достаточным условием дифференцируемости функции у = /(х) одной переменной в точке хо являетсясу шествование конечной производной /"(х) в точке х0. В случае, когда функция зависит от нескольких переменных, дело обстоит значительно сложнее: необходимых и достаточных условий дифференцируемости нет уже для функ ии z = /(х, у) двух независимых переменных х, у; есть лишь отдельно необходимые условия (см. выше) и отдельно - достаточные. Эти достаточные условия дифференцируемости функций нескольких переменных выражаются следующей теоремой. Теорема в. Если функция имеет частные производные /£ и f"v в некоторой окрестности тонки (хо, Уо) и если эти производные непрерывны в самой точке (хо,Уо), то функция z = f(x, у) дифференцируема в точке (х- Пример. Рассмотрим функцию Частные производные Геометрический смысл частных производных функции двух переменных Дифференцируемость функции нескольких переменных Необходимые условия дифференцируемости функции Достаточные условия дифференцируемсти функций нескольких переменных Полный дифференциал. Частные дифференциалы Производные сложной функции Она определена всюду. Исходя из определения частных производных, имеем Для наощдрлм* дифференцируемое™ данной функции в точке 0(0,0) найдем и приращение этой точит Для дифференцируем ости функции /(х,у) = в точив 0(0,0) необходимо, чтобы функция е(Дх, Ду) быле 6всконеио малой при Дх 0 и Ду 0. Положим Д0. Тогда из формулы (1) будем иметь Поэтому функции /(х,у) = не дифференцируема в точке 0(0,0), хотя и имеет в этой точке производим fa и f"r Полученный результат объясняется тем, что производные f"z и f"t разрывны точке §7. Полный дифференциал. Частные дифференциалы Если функция г - f(z> у) дифференцируема, то ее пожьгй дифференциал dz равен Замечая, что А = В = щ, запишем формулу (1) в следующем виде Распространим понятие дифференциала функции на независимые переменные, положив дифференциалы независимых переменных равными их приращениям: После этого формула полного дифференциала функции приметвкд Пример. Пусть i - 1л(х + у2). Тогда Аналогично, если u =) есть дифференцируемая функция n независимых переменных, то Выражение называется постным дифференциалом функции z = f(x, у) по переменной х; выражение называется частным дифференциалом функции z = /(ж, у) попеременной у. Из формул (3), (4) и (5) следует, что полный дифференциал функции является суммой ее частных дифференциалов: Отметим, что полное приращение Az функции z = /(ж, у), вообще говоря, не равно сумме частных приращений. Если в точке (я, у) фунмцияг = /(ж, у) дифференцируема и дифференциал dz Ф О в этой точке, то ее полное приращение отличается от своей линейной части только на сумму последних слагаемых аАх 4- /?ДУ, которые при Аж 0 и Ау --» О являются бесконечно малыми более высокого порядка, чем слагаемыелинейной части. Поэтому при dz Ф 0 линейную часть приращения дифференцируемой функции называют главной частью приращения функции и пользуются приближенной формулой которая будет тем более точной, чем меньшими по абсолютной величине будут приращения аргументов. §8. Производные сложной функции 1. Пусть функция определена в некоторой области D на плоскости хОу, причем каждая из переменных ж, у в свою очередь является функцией аргумента t: Будем предполагать, что при изменении t в интервале (соответствующие точки (ж, у) не выходят за пределы области D. Если подставить значения в функцию z = / (ж, у), то получим сложную функцию одной переменной t. и при соответствующих значениях функция /(х,у) дифференцируема, то сложная функция, в точке t имеет производную причем M Дадим t приращение Дt. Тогда x и у получат некоторые приращения Ах и Ду. В результате этого при (Дж)2 + (Ду)2 Ф 0 функция z также получит некоторое приращение Дг, которое в силу дифференцируемости функции z = /(ж, у) в точке (х, у) может быть представлено в виде где а) стремятся к нулю при стремлении к нулю Ах и Ду. Доопределим а и /3 при Ах = Ау = 0, положив а Тогда а(будут непрерывны при Дж = Ду = 0. Рассмотрим отношение Имеем В каждом слагаемом^ в Правой части (2) оба сомножителя имеют пределы при действительно, частные производные и ^ для данной являются постоянными, по условию существуют пределы из существования производных ^ и в точке £ следует непрерывность в этой точке функций х = y(t) и у = поэтому при At 0 стремятся к нулю и Дж и Ду, что в свою очередь влечет за собой стремление к нулю а(Дх, Ду) и Р(Ах, Ау). Таким образом, правая часть равенства (2) при 0 имеет предел, равный Значит, существует при At 0 и предел левой части (2), т. е. существует равный Переходя в равенстве (2) к пределу при At -» 0, получаем требуемую формулу В частном случае, когда, следовательно, z является сложной функцией от ж, получаем В формуле (5) есть частная производная фунадииг = /(ж, у) по ж, при вычи слении которой в выражении/(ж, у) аргумент у принимается за постоянную. А есть полная производная функции z по независимой переменной ж, при вычислении которой у в выражении /(ж, у) уже не принимается за постоянную, а считается в свою очередь функцией от ж: у = tp(x)t и поэтому зависимость z от ж учитывается полностью. Пример. Найти и jg , если 2. Рассмотрим теперь дифференцирование сложной функции нескольких переменных. Пусть где в свою очередь так что Предположим, что в точке (() существуют непрерывные частные производные щ, 3?» а в соответствующей точке (ж,у), где Функция /(ж, у) дифференцируема. Покажем, что при этих условиях сложная фуншия z = z({} у) в точке t7) имеет производные и щ, и найдем выражения для этих производных. Заметим, что этот случай от уже изученного существенно не отличается. Действительно, при дифференцировании z по £ вторая независимая переменная rj принимается за постоянную, вследствие чего ж и у при этой операции становятся функциями одной переменной ж" = с), у = с) и вопрос о производной Ц решается совершенно так же, как вопрос о производной при выводе формулы (3). Используя формулу (3) и формально заменяя в ней производные § и ^ на производные щ и соответственно, получим Аналогично находим Пример. Найти частные производные ^ и ^ функции г = ж2 у - хуесли х - у = Если сложная функция « Задана формулами так что то при выполнении соответствующих условий имеем В частном случае, когда И = где Частные производные Геометрический смысл частных производных функции двух переменных Дифференцируемость функции нескольких переменных Необходимые условия дифференцируемости функции Достаточные условия дифференцируемсти функций нескольких переменных Полный дифференциал. Частные дифференциалы Производные сложной функции имеем Здесь т- полная.частная производная функции и по независимой переменной х, учитывающая полную зависимость и от х, втомчисле и через z = z(x,y),a ^ -частная произврдная.функдодои и = /(г,у, г) по х, при вычислении к