Стрелочный измеритель эпс конденсаторов. Измерение эпс (esr) конденсаторов. Вариант изготовленной печатной платы прибора

Как очень просто узнать значение ESR любого конденсатора при ремонтах, используя подручные приборы мы сейчас и разберёмся. Конденсатор, как все знают, имеет такой параметр как ESR (эквивалентное последовательное сопротивление - ЭПС) и измерения его очень полезны при диагностике проблем с электропитаниям. Например в линейных источниках питания, высокий ESR конденсатора фильтра может привести к чрезмерной пульсации тока и далее к перегреву конденсатора с последующим выходом из строя. В общем сейчас мы расскажем, как измерить ESR (ЭПС) конденсатора без - с помощью обычного звукового генератора и мультиметра.

Немного теории про конденсатор

Типичный конденсатор может быть смоделирован как идеальный конденсатор последовательно с резистором - эквивалентное последовательное сопротивление. Если мы приложим напряжение переменного тока на конденсатор при тестировании через токоограничивающий резистор, получим следующую схему:

Схему можно рассматривать как простой резисторный делитель, если частота источника переменного тока достаточно высока, поскольку реактивное сопротивление конденсатора обратно пропорционально частоте практически для любой емкости. Таким образом, мы можем использовать значение измеряемого напряжения на конденсаторе для расчета ESR:

Для ESR получаем такую вышеприведённую формулу. Если использовать генератор с 50 омным выходом, то можно подключить конденсатор при тестировании непосредственно к выходу функционального генератора и измерить напряжение переменного тока на конденсаторе, после чего рассчитать ESR с помощью вышеприведенного уравнения.

Какое напряжение использовать для проверки

Так как электролитические конденсаторы являются поляризованными, мы можем либо использовать напряжение переменного тока с фиксированным значением постоянного тока или просто использовать переменное напряжение достаточно низкого уровня, так чтоб емкости на тесте не превышали максимальное обратное напряжение (обычно меньше 1 В). Большинство ESR метров используют именно этот второй подход, поскольку он прост в реализации и не нужно беспокоиться о полярности измерения. Здесь выберем 100 мВ предел измерения напряжения. Это напряжение выбирается потому, что оно ниже прямого напряжения на p/n-переходе (от 0,2 до 0,7 вольт в зависимости от типа полупроводника) так что можно выполнить измерения ESR прямо в схеме - не выпаивая конденсатор.

На приведенном ниже графике показано расчетное значение ESR в зависимости от измеряемого напряжения при использовании 100 мВ сигнала от 50 Ом источника ЗЧ.

Вообще расчет до сих пор основывался на допущении, что реактивное сопротивление конденсатора близко к нулю. Поэтому для того, чтобы получить наиболее точный результат, важно выбрать частоту измерения на основе значения параметров конденсатора так, чтоб реактивное сопротивление игнорировалось. Напомним, что реактивное сопротивление конденсатора равно:

Если мы игнорируем это и зафиксируем реактивное сопротивление - получим зависимость емкости от частоты. На приведенном ниже графике показаны такие отношения для трех значений (0.5, 1, 2 Ом).

Этот график служит для определения минимальной частоты, необходимой для измерения данной емкости для того, чтобы реактивное сопротивление было ниже заданного значения. Например, если есть конденсатор 10 мкф, минимальная частота на 2 Ома примерно 8 кГц. Если мы хотим, чтобы реактивное сопротивление было меньше 1 Ом, то минимальная частота нужна примерно 16 кГц. И если мы хотим снизить реактивное сопротивление еще до 0,5 Ом, нужно будет задать частоту генератора выше 30 кГц.

Выбор частоты для измерения ЭПС

С одной стороны более высокие частоты лучше для измерения ЭПС из-за снижения реактивного сопротивления, но не всегда желательно. Реактивное сопротивление за счет индуктивности в цепи возрастает пропорционально частоте входного сигнала и эта реактивность может значительно исказить результат измерения. Так что на больших конденсаторах фильтров БП, используемая частота обычно составляет от 1 до 5 кГц, а для небольших конденсаторов на высоких частотах может быть использована от 10 до 50 кГц. Таким образом мы узнали теоретические основы измерения эквивалентного последовательного сопротивления конденсаторов и практический метод домашней проверки ЭПС без применения специальных .

Рассказать в:

Не ослабевает интерес наших читателей и авторов к разработке и изготовлению устройств измерения ЭПС (ESR) оксидных конденсаторов. Предлагаемая ниже приставка к мультиметрам серии 83х продолжает эту тему. Мультиметры, далее приборы, серии 83х - очень популярны среди радиолюбителей из-за доступной цены и приемлемой точности измерений.




На страницах журнала "Радио" неоднократно публиковались статьи по расширению возможностей этих приборов, например, . При разработке предлагаемой приставки, так же как и в , была поставлена задача не применять дополнительный источник питания. Схема приставки показана на рис. 1 .


Рис.1

В приборах, построенных на микросхемах АЦП ICL71x6 или их аналогах, есть внутренний стабилизированный источник напряжения 3 В с максимальным током нагрузки 3 мА . С выхода этого источника подано напряжение питания на приставку через разъём "СОМ" (общий провод) и внешнее гнездо "NPNc", которое входит в состав восьмиконтактной розетки для подключения маломощных транзисторов в режиме измерения статического коэффициента передачи тока. Метод измерения ЭПС аналогичен применённому в цифровом измерителе, который описан в статье . По сравнению с этим устройством предлагаемая приставка существенно отличается простотой схемы, малым числом элементов и их низкой ценой.

Основные технические характеристики
Интервал измерения ЭПС, Ом:
при разомкнутых контактах выключателя SA1 0,1... 199,9
при его замкнутых контактах (положение "х0,1") 0,01...19,99
Ёмкость проверяемых конденсаторов, не менее, мкФ 20
Ток потребления, мА 1,5



При работе с приставкой переключатель рода работ прибора устанавливают в положение измерения напряжения постоянного тока с пределом "200 мВ". Внешние вилки приставки "СОМ", "VΩmA", "NPNc" стыкуются с соответствующими гнёздами прибора. Временная диаграмма показана на рис. 2 . Генератор, собранный на логическом элементе DD1.1 - триггере Шмитта, диоде VD1, конденсаторе С1 и резисторах R1, R2, вырабатывает последовательность положительных импульсов длительностью t r = 4 мкс с паузой 150 мкс и стабильной амплитудой около 3 В (рис. 2, а ). Эти импульсы можно наблюдать осциллографом относительно общего провода гнезда "СОМ". Во время каждого импульса через проверяемый конденсатор, подключённый к гнёздам "Сх" приставки, протекает заданный резисторами R4, R5 стабильный ток, который равен 1 мА при разомкнутых контактах выключателя SA1 или 10 мА при его замкнутых контактах (положение "х0,1").

Рассмотрим работу узлов и элементов приставки с подключённым проверяемым конденсатором с момента появления очередного импульса длительностью t r на выходе элемента DD1.1. От инвертированного элементом DD1.2 импульса низкого уровня длительностью t r транзистор VT1 закрывается на 4 мкс. После зарядки ёмкости сток-исток закрытого транзистора VT1 напряжение на выводах проверяемого конденсатора будет зависеть практически только от тока протекающего через его ЭПС. На логическом элементе DD1.3, резисторе R3 и конденсаторе С2 собран узел задержки фронта импульса генератора на 2 мкс. За время задержки t 3 ёмкость сток-исток закрытого транзистора VT1, шунтирующая испытуемый конденсатор, успевает зарядиться и практически не влияет на точность следующего после t 3 процесса измерения (рис. 2,б ). Из задержанного на 2 мкс и укороченного по длительности до 2 мкс импульса генератора на выходе инвертора DD1.4 формируется измepиteльный импульс длительностью t изм = 2 мкс (рис. 2,в) высокого уровня. От него открывается транзистор VT2, а запоминающий конденсатор СЗ начинает заряжаться от падения напряжения на ЭПС проверяемого конденсатора через резисторы R6, R7 и открытый транзистор VT2. По окончании измерительного импульса и импульса с выхода генератора от высокого уровня на выходе элемента DD1.2 транзистор VT1 открывается, a VT2 от низкого уровня на выходе элемента DD1.4 закрывается. Описанный процесс повторяется каждые 150 мкс, что приводит к зарядке конденсатора СЗ до падения напряжения на ЭПС проверяемого конденсатора после нескольких десятков периодов. На индикаторе прибора отображается значение эквивалентного последовательного сопротивления в омах. При положении выключателя SA1 "х0,1" показания индикатора нужно умножить на 0,1. Открытый между импульсами генератора транзистор VT1 устраняет рост напряжения (заряд) на ёмкостной составляющей проверяемого конденсатора до значений ниже минимальной чувствительности прибора, равной 0,1 мВ. Наличие входной ёмкости транзистора VT2 приводит к смещению нуля прибора. Для устранения её влияния применены резисторы R6 и R7. Подбором этих резисторов добиваются отсутствия напряжения на конденсаторе СЗ при замкнутых гнёздах "Сх" (установка нуля).

О погрешностях измерений. Во-первых, имеет место систематическая погрешность, достигающая примерно 6 % для сопротивлений, близких к максимуму в каждом интервале. Она связана с уменьшением тока тестирования, но не так важна - конденсаторы с такими ЭПС подлежат браковке. Во-вторых, существует погрешность измерения, зависящая от ёмкости конденсатора.
Объясняется это ростом напряжения во время импульса с генератора на ёмкостной составляющей конденсаторов: чем меньше ёмкость, тем быстрее её зарядка. Эту погрешность нетрудно рассчитать, зная ёмкость, ток и время зарядки: U = М/С. Так, для конденсаторов ёмкостью более 20 мкФ она не влияет на результат измерений, а вот для 2 мкФ измеренное значение будет больше реального примерно на 1,5 Ома (соответственно, 1 мкФ - 3 Ома, 10 мкФ - 0,3 Ома и т. п.).

Чертё ж печатной платы показан на рис. 3 . Три отверстия под штыри следует просверлить так, чтобы последние входили в них с небольшим усилием.

Это облегчит процесс их пайки к контактным площадкам. Штырь "NPNc" - позолоченный от подходящего разьёма, подойдёт и кусок лужёного медного провода. Отверстие под него сверлят в подходящем месте после установки штырей "СОМ" и "VΩmA". Последние - от вышедших из строя измерительных щупов. Конденсатор СЗ желательно применить из группы ТКЕ не хуже Н10 (X7R). Транзистор IRLML6346 (VT1) можно заменить на IRLML6246, IRLML2502, IRLML6344 (в порядке ухудшения). Критерии замены - сопротивление открытого канала не более 0,06 Ом при напряжении затвор-исток 2,5 В, ёмкость сток-исток - не более 300...400 пФ. Но если ограничиться только интервалом 0,01...19,00 Ом (выключатель SA1 в этом случае заменяют перемычкой, резистор R5 удаляют), то максимальная ёмкость сток-исток может достигать 3000 пФ. Транзистор 2N7000 (VT2) заменим на 2N7002, 2N7002L, BS170C пороговым напряжением не более 2...2,2 В. Перед монтажом транзисторов следует проверить соответствие расположения выводов проводникам печатной платы. Гнёзда XS1, XS2 в экземпляре автора - клеммник винтовой 306-021-12.


Перед налаживанием приставку следует подключить не к мультиметру, чтобы не вывести его из строя, а к автономному источнику питания напряжением 3 В, например, к двум последовательно соединённым гальваническим элементам. Плюс этого источника временно подключают к штырю "NPNc" приставки (не подключая этот штырь к мультиметру), а минус - к её общему проводу. Измеряют потребляемый ток, который не должен превышать 3 мА, после чего автономный источник отключают. Гнёзда "Сх" временно замыкают коротким отрезком медного провода диаметром не менее 1 мм. Штыри приставки вставляют в одноимённые гнёзда прибора. Подбором резисторов R6 и R7 устанавливают нулевые показания прибора при обоих положениях выключателя SA1. Для удобства эти резисторы можно заменить одним подстроечным, а после настройки нуля впаивают резисторы R6 и R7 с суммарным сопротивлением, равным подстроечному.



Удаляют отрезок провода, замыкающий гнёзда "Сх". К ним подключают резистор 1...2 0м при замкнутом положении SA1, затем - 10...20 Ом при разомкнутом. Сверяют показания прибора с сопротивлениями резисторов. В случае необходимости подбирают R4 и R5, добиваясь желаемой точности измерения. Внешний вид приставки показан на фото рис. 4 .
Приставку можно использовать как омметр малых сопротивлений Также ею можно измерять внутреннее сопротивление малогабаритных гальванических или аккумуляторных элементов и батарей через последовательно соединённый конденсатор ёмкостью не менее 1000 мкФ, соблюдая полярность его подключения. Из полученного результата измерения необходимо вычесть ЭПС конденсатора, который должен быть измерен заранее.


ЛИТЕРАТУРА
1. Нечаев И. Приставка к мультиметру для измерения емкости конденсаторов. - Радио, 1999, №8,с.42,43.
2. Чуднов В. Приставка к мультиметру для измерения температуры. - Радио, 2003, № 1, с. 34.
3. Подушкин И. Генератор + одновибратор = три приставки к мультиметру. - Радио, 2010, № 7, с. 46, 47; № 8, с. 50-52.
4. Даташит ICL7136 http://radio-hobby.org/modules/datasheets/2232-icl7136
5. Бирюков С. Цифровой измеритель ESR. - Схемотехника, 2006, № 3, с. 30-32; №4, с. 36,37.

АРХИВ: Скачать с сервера

Раздел: [Измерительная техника]
Сохрани статью в:

Большое спасибо за проделанную работу. Еще один из выводов на основании прочитанного:Головка в 1 мА оказалась тупа для такого детектора. ведь именно включение последовательно с головкой резистора растягивает шкалу. Поскольку большая точность не нужна можно попробовать головку от магнитофона. (одна беда она изрядно электризуется, чуть рукавом свитера задел и стрелка сама на пол шкалы скачет) а ток полного отклонения около 240 мкА (точное название М68501)
А вообще чтоб конденсатор выбраковать разве недостаточно шкалы ом до 10-12?

Приставка к мультиметру - измеритель ESR

Идеальный конденсатор, работая на переменном токе должен обладать только реактивным (емкостным) сопротивлением. Активная составляющая должна быть близка к нулю. Реально, хороший оксидный (электролитический) конденсатор должен обладать активным сопротивлением (ESR) не более 0,5-5 Ом (зависит от емкости, номинального напряжения). Практически, в аппаратуре, проработавшей несколько лет, можно встретить, казалось бы исправный конденсатор емкостью 10 мкФ с ESR до 100 Ом и более. Такой конденсатор, несмотря на наличие емкости, - негоден, и скорее всего является причиной неисправности или некачественной работы аппарата, в котором он работает.

На рисунке 1 показана схема приставки к мультиметру для измерения ESR оксидных конденсаторов. Чтобы измерить активную составляющую сопротивления конденсатора необходимо выбрать такой режим измерения, при котором реактивная составляющая будет очень мала. Как известно, реактивное сопротивление емкости снижается с увеличением частоты. Например, на частоте 100 кГц при емкости 10 мкФ реактивная составляющая буде менее 0,2 Ом. То есть, измеряя сопротивление оксидного конденсатора емкостью более 10 мкФ по падению на нем переменного напряжения частотой 100 кГц и более, можно утверждать, что. при заданной погрешности 10-20% результат измерения можно будет принять практически только как величину активного сопротивления.
И так, схема, показанная на рисунке 1, представляет собой генератор импульсов частоты 120 кГц, выполненный на логических инверторах микросхемы D1, делитель напряжения, состоящий из сопротивлений R2,R3 и тестируемого конденсатора СХ, и измерителя переменного напряжения на СХ, состоящего из детектора VD1-VD2 и мультиметра, включенного на измерение малых постоянных напряжений.
Частота установлена цепью R1-C1. Элемент D1.3 является согласующим, а на элементах D1.4-D1.6 сделан выходной каскад.

Подстройкой сопротивления R2 выполняют юстировку прибора. Так как в популярном мультиметре М838 нет режима измерения малых переменных напряжений (а именно с этим прибором у автора работает приставка), в схеме пробника имеется детектор на германиевых диодах VD1-VD2. Мультиметр измеряет постоянное напряжение на С4.
Источником питания служит «Крона». Это такая же батарея, как та, которой питается мультиметр, но приставка должна питаться от отдельной батареи.
Монтаж деталей приставки выполнен на печатной плате, разводка и расположение деталей которой показаны на рисунке 2.
Конструктивно приставка выполнена в одном корпусе с источником питания. Для подключения к мультиметру используются Собственные щупы мультиметра. Корпусом служит обычная мыльница.
От точек Х1 и Х2 сделаны коротенькие щупы. Один из них жесткий, в виде шила, а второй гибкий длиной не более 10 см, око-неченый таким же заостренным щупом. Эти щупы можно подключать к конденсаторам, как к немонтированным, так к расположенным на плате (выпаивать их не требуется), что значительно упрощает поиск дефектного конденсатора при ремонте. Желательно подобрать к этим щупам «крокодильчики» для удобства проверки немонтированных (или демонтированных) конденсаторов.

Микросхему К561ЛН2 можно заменить аналогичной К1561ЛН2, ЭКР561ЛН2, а с изменениями в плате - К564ЛН2, CD4049.
Диоды Д9Б - любые гарманиевые, например, любые Д9, Д18, ГД507. Можно попробовать применить и кремниевые.
Выключатель S1 - микротумблер предположительно китайского производства. У него плоские выводы под печатный монтаж.
Налаживание приставки. После проверки монтажа и работоспособности подключите мультиметр. Желательно частотомером или осциллографом проверить частоту на Х1-Х2. Если она лежит в пределах 120-180 кГц, - нормально. Если нет, - подберите сопротивление R1.
Подготовьте набор постоянных резисторов сопротивлением 1 Ом, 5 Ом, 10 Ом, 15 Ом, 25 Ом, 30 Ом, 40 Ом, 60 Ом, 70 Ом и 80 Ом (или около того). Подготовьте лист бумаги. Подключите вместо испытуемого конденсатора резистор сопротивлением 1 Ом. Поверните ползунок R2 так, чтобы мультиметр показал напряжение 1 mV. На бумаге запишите «1 Ом = 1mV». Далее, подключайте другие резисторы, и, не меняя положение R2, делайте аналогичные записи (например. «60Ом = 17mV»).
Получится таблица расшифровки показаний мультиметра. Эту таблицу нужно аккуратно оформить (вручную или на компьютере) и наклеить на корпус приставки, так чтобы таблицей было удобно пользоваться. Если таблица бумажная, - наклейте на её поверхность скотч-ленты, чтобы защитить бумагу от истирания.
Теперь, проверяя конденсаторы, вы считываете показания мультиметра в милливольтах, затем по таблице примерно определяете ESR конденсатора и принимаете решение о его пригодности.
Хочу заметить, что эту приставку можно приспособить и для измерения емкости оксидных конденсаторов. Для этого нужно существенно понизить частоту мультивибратора, подключив параллельно С1 конденсатор емкостью 0,01 мкФ. Для удобства можно сделать переключатель «С / ESR». Так же потребуется сделать еще одну таблицу, - со значениями емкостей.
Желательно, для соединения с мультиметром использовать экранированный кабель, чтобы исключить влияние наводок на показания мультиметра.

Аппарат, на плате которого вы ищите неисправный конденсатор, должен быть выключен, как минимум за полчаса до начала поисков (чтобы конденсаторы, имеющиеся в его схеме, разрядились).
Приставку можно использовать не только с мультиметром, но и с любым прибором, способным измерять милливольты постоянного или переменного напряжения. Если ваш прибор способен измерять малое переменное напряжение (милливольтметр переменного тока или дорогой мультиметр) можно детектор на диодах VD1 и VD2 не делать, а измерять переменное напряжение прямо на испытуемом конденсаторе. Естественно, табличку нужно делать под конкретный прибор, с которым вы планируете работать в дальнейшем. А в случае использования прибора со стрелочным индикатором можно на его шкалу нанести дополнительную шкалу для измерения ESR.

Радиоконструктор, 2009, №01 стр. 11-12 Степанов В.

Литература:
1 С Рычихин. Пробник оксидных конденсаторов Радио, №10, 2008, стр.14-15.

Более года использую прибор по схеме Д. Телеша из журнала "Схемотехника" №8, 2007 г., стр. 44-45.

На милливольтметре М-830В на диапазоне 200 мВ показания, без установленного конденсатора, - 165...175 мВ.
Напряжение питания 3 В (2 батарейки АА работали больше года), частота измерения от 50 до 100 кГц (установил 80 кГц подбором конденсатора С1). Практически измерял емкости от 0,5 до 10000 МкФ и ESR от 0,2 до 30 (при тарировке показания прибора в мВ оответствуют резисторам того-же номинала в Ом). Использовал для ремонта импульсных блоков питания ПК и БРЭА.

Практически готовая схема для проверки ЕПС, если собраь на КМОП, то будет работать и от 3-х вольт... .

ESR-метр

Т. е., прибор для измерения ЭПС - эквивалентного последовательного сопротивления.

Как выяснилось, работоспособность (электролитических - частности) конденсаторов, особенно тех, которые работают в силовых импульсных устройствах, влияет в значительной степени внутреннее эквивалентное последовательное сопротивление переменному току. Различные производители конденсаторов по разному относятся к значениям частоты, на которой должна определяться величина ЭПС, но частота эта не должна быть ниже 30кГц.

Величина ЭПС в какой-то степени связана с основным параметром конденсатора - емкостью, но доказано, что конденсатор может быть неисправным из-за большого собственного значения ЭПС, даже при наличии заявленной емкости.

вид снаружи

В качестве генератора использована микросхема КР1211ЕУ1 (частота при номиналах на схеме около 70кГц), трансформаторы могут быть применены фазоинверторные от БП АТ/АТХ - одинаковые параметры (коэффициенты трансформации в частности) практически от всех производителей. Внимание!!! В трансформаторе Т1 используется лишь половинка обмотки.

Головка прибора имет чувствительность 300мкА, но возможно использование других головок. Предпочтительно использование более чувствительных головок.

Шкала этого прибора растянута на треть при измерении до 1-го Ома. Десятая Ома легко отличима от 0,5 Ома. В шкалу укладываются 22 Ома.

Растяжку и диапазон можно варьировать с помощью добавления витков к измерительной обмотке (с щупами) и/или к обмоткам III того или иного трансформатора.

http://www. matei. ro/emil/links2.php

http://www. . au/cms/gallery/article. html? slideshow=0&a=103805&i=2

https://pandia.ru/text/78/437/images/image058_1.jpg" alt="image" width="550" height="374">

При подключении исправного конденсатора, светодиод должен гаснуть полностью, т. к. короткозамкнутые витки полностью срывают генерацию. При неисправных конденсаторах, светодиод продолжает гореть или чуть-чуть пригасает, в зависимости от величины ESR.

Простота данного пробника, позволяет собрать его в корпусе от обычного фломастера, основное место в нём уделяется батарее, кнопке включения и светодиоде выступающем над корпусом. Миниатюрность пробника позволяет разместить один из щупов, там же, а второй сделать максимально коротким проводом, что уменьшит влияние индуктивности щупов, на показания. К тому же не понадобится крутить головой, для визуального контроля индикатора и установки щупов, что часто неудобно в процессе работы.

Конструкция и детали.
Катушки трансформатора намотаны на одном кольце, желательно наименьшего размера, его магнитная проницаемость не очень важна, генераторные имеют число витков по 30 вит. каждая, индикаторная - 6 вит. и измерительная 4 вит. или 3 вит. (подбирается при настройке), толщина всех проводов 0,2-0,3мм. Измерительную обмотку следует мотать проводом не менее 1.0 мм. (Вполне подойдет монтажный провод – лишь бы обмотка уместилась на кольце.) R1 регулирует в небольших пределах частоту и потребляемый ток. Резистор R2 ограничивает ток короткого замыкания создаваемого проверяемым конденсатором, он, по соображения защиты от заряженного конденсатора, который разрядится через него и обмотку, должен быть 2-х ваттным. Варьируя его сопротивлением, можно легко отличить сопротивление от 0.5 Ом и выше, по свечению светодиода. Транзистор подойдёт любой маломощный. Питание осуществляется от одной батареи 1.5 вольта. В ходе испытаний прибора, его даже удавалось запитывать от двух щупов стрелочного омметра, включенного на единицы Ом.

Номиналы деталей:
Rоm
R2* - 1оm
C1- 1 мкФ
С2- 390пФ

Настройка.
Не представляет никаких трудностей. Правильно собранный генератор начинает работать сразу на частоте 50-60 кГц, если не загорится светодиод, нужно поменять полярность включения. Потом подключая к измерительной обмотке вместо конденсатора резистор 0.5-0.3 Ома добиваются еле заметного свечения, подбирая витки и резистор R2, но обычно их количество колеблется от 3-х до 4-х. В конце всего проверяют на заведомо исправном и неисправном конденсаторе. При наличии небольших навыков, легко распознаются ESR конденсатора до 0.3-0,2 Ома, что вполне достаточно для отыскания неисправного конденсатора, от ёмкости в 0,47 и до 1000мкФ. Вместо одного светодиода можно поставить два и в цепь одного из них включить стабилитрон на 2-3 вольта, но понадобится увеличить обмотку, да и конструктивно прибор усложнится. Можно сделать сразу два щупа, выходящими из корпуса, но следует предусмотреть расстояние между ними, чтоб было удобно мерить различные по величине, конденсаторы. (например - для SMD конденсаторов можно использовать идею ув. Barbos"а - и конструктивно выполнить пробник в виде пинцета)

Ещё одно применение этого прибора: им удобно проверять кнопки управления в аудио и видеоаппаратуре, т. к. со временем некоторые кнопки дают ложные команды из-за повышенного внутреннего сопротивления. Тоже касается и проверки печатных проводников на обрыв или проверки переходного сопротивления контактов.
Надеюсь, пробник займёт достойное место в строю приборов-помощников «жукостроителя».

Впечатление от использования этого пробника:
- я забыл, что такое неисправный конденсатор;
- 2/3 старых конденсаторов пришлось выкинуть.
Ну и самое приятное – в магазин и на базар без пробника я не хожу.
Продавцы конденсаторов – очень недовольны.

Измеритель емкости и индуктивности

Е. Терентьев
Радио, 4, 1995

http://www. *****/shem/schematics. html? di=54655

Предлагаемый стрелочный измеритель позволяет определять параметры большинства встречающихся в практике радиолюбителя катушек индуктивности и конденсаторов. Кроме измерений параметров элементов, прибор может быть использован как генератор фиксированных частот с декадным делением, а также как генератор меток для радиотехнических измерительных приборов.

Предлагаемый измеритель емкости и индуктивности отличается от аналогичного ("Радио", 1982, 3, стр.47) простотой и малой трудоемкостью изготовления. Диапазон измерений разбит подекадно на шесть поддиапазонов с предельными значениями емкости 100 пф - 10 мкф для конденсаторов и индуктивности 10 мкГн - 1 Гн для катушек индуктивности. Минимальные значения измеряемых емкости, индуктивности и точность измерения параметров на пределе 100 пф и 10 мкГн определяет конструктивная емкость клемм или гнезд для подключения выводов элементов. На остальных поддиапазонах погрешность измерения в основном определяется классом точности стрелочной измерительной головки. Потребляемый прибором ток не превышает 25 мА.

Принцип работы прибора основан на измерении среднего значения разрядного тока емкости конденсатора и ЭДС самоиндукции индуктивности. Измеритель, принципиальная схема которого приведена на рис.1, состоит из задающего генератора на элементах DD1.5, DD1.6 с кварцевой стабилизацией частоты, линейки делителей частоты на микросхемах DD2 - DD6 и буферных инверторов DD1.1 - DD1.4. Резистор R4 ограничивает выходной ток инверторов. Цепь из элементов VD7, VD8, R6, C4 используется при измерении емкости, а цепь VD6, R5, R6, C4 - при измерении индуктивности. Диод VD9 защищает микроамперметр PA1 от перегрузки. Емкость конденсатора C4 выбрана сравнительно большой, чтобы уменьшить дрожание стрелки на максимальном пределе измерения, где тактовая частота минимальна - 10 Гц.

В приборе использована измерительная головка с током полного отклонения 100 мкА. Если применить более чувствительную - на 50 мкА, то в этом случае можно уменьшить предел измерения в 2 раза. Семисегментный светодиодный индикатор АЛС339А используется как индикатор измеряемого параметра, его можно заменить индикатором АЛС314А. Вместо кварцевого резонатора на частоту 1 МГц можно включить слюдяной или керамический конденсатор емкостью 24 пф, однако при этом погрешность измерения увеличится на 3-4%.

Возможны замены диода Д20 диодами Д18 или ГД507, стабилитрона КС156А - стабилитронами КС147А, КС168А. Кремниевые диоды VD1-VD4, VD9 могут быть любыми с максимальным током не менее 50 мА, а транзистор VT1 - любым из типов КТ315, КТ815. Конденсатор CЗ - керамический К10-17а или КМ-5. Все номиналы элементов и частота кварца могут отличаться на 20 %.

Настройку прибора начинают в режиме измерения емкости. Переводят переключатель SB1 в верхнее по схеме положение и устанавливают переключатель диапазона SA1 в положение, соответствующее пределу измерения 1000 пФ. Подключив образцовый конденсатор емкостью 1000 пФ к клеммам XS1, XS2, движок подстроечного резистора R6 выводят в положение, при котором стрелка микроамперметра PA1 установится на конечное деление шкалы. Затем переводят переключатель SB1 в режим измерения индуктивности и, подключив к клеммам катушку индуктивности величиной 100 мкГн, в том же положении переключателя SA1 производят аналогичную калибровку подстроечным резистором R5. Естественно, точность калибровки прибора определяется точностью используемых образцовых элементов.

Измерения прибором параметров элементов желательно начинать с большего предела измерений для избежания резкого зашкаливания стрелки головки прибора. Для обеспечения питания измерителя можно использовать постоянное напряжение 10...15 В или переменное напряжение от подходящей обмотки трансформатора питания другого прибора с током нагрузки не менее 40...50 мА. Мощность отдельного трансформатора должна быть не менее 1 Вт.

В случае питания прибора от батареи аккумуляторов или гальванических элементов напряжением 9 В его можно упростить и повысить экономичность исключением диодов выпрямителя напряжения питания, индикатора HG1 и переключателя SB1, выведя на переднюю панель прибора три клеммы (гнезда) от точек 1, 2, 3, указанных на принципиальной схеме. При измерении емкости конденсатор подключают к клеммам 1 и 2, при измерении индуктивности катушку подключают к клеммам 1 и 3.

Примечание редакции. Точность измерителя LC со стрелочным индикатором в определенной степени зависит от участка шкалы, поэтому введение в схему переключаемого делителя частоты на 2, 4 или аналогичное изменение частоты задающего генератора (для варианта без кварцевого резонатора) позволяет снизить требования к габаритам и классу точности показывающего прибора.

Приставка-измеритель LC к цифровому вольтметру

http:///izmer/izmer4.php

Цифровой измерительный прибор в лаборатории радиолюбителя теперь не редкость. Однако не часто им можно измерить параметры конденсаторов и катушек индуктивности, даже если это мультиметр. Описываемая здесь простая приставка предназначена для использования совместно с мультиметрами или цифровыми вольтметрами (например, М-830В, М-832 и им подобными), не имеющими режима измерения параметров реактивных элементов.

Для измерения емкости и индуктивности с помощью несложной приставки использован принцип, подробно описанный в статье А. Степанова "Простой LC-метр" в "Радио" № 3 за 1982 г. Предлагаемый измеритель несколько упрощен (вместо генератора с кварцевым резонатором и декадного делителя частоты применен мультивибратор с переключаемой частотой генерации), но он позволяет с достаточной для практики точностью измерять емкость в пределах 2 пф...1 мкф и индуктивность 2 мкГн... 1 Гн. Кроме того, в нем вырабатывается напряжение прямоугольной формы с фиксированными частотами 1 МГц, 100 кГц, 10 кГц, 1 кГц, 100 Гц и регулируемой амплитудой от 0 до 5 В, что расширяет область применения устройства.

Задающий генератор измерителя (рис. 1) выполнен на элементах микросхемы DD1 (КМОП), частоту на его выходе изменяют с помощью переключателя SA1 в пределах 1 МГц - 100 Гц, подключая конденсаторы С1-С5. С генератора сигнал поступает на электронный ключ, собранный на транзисторе VT1. Переключателем SA2 выбирают режим измерения "L" или "С". В показанном на схеме положении переключателя приставка измеряет индуктивность. Измеряемую катушку индуктивности подключают к гнездам Х4, Х5, конденсатор - к ХЗ, Х4, а вольтметр - к гнездам Х6, Х7.


При работе вольтметр устанавливают в режим измерения постоянного напряжения с верхним пределом 1 - 2В. Следует учесть, что на выходе приставки напряжение изменяется в пределах 0... 1 В. На гнездах Х1, Х2 в режиме измерения емкости (переключатель SA2 - в положении "С") присутствует регулируемое напряжение прямоугольной формы. Его амплитуду можно плавно изменять переменным резистором R4.

Питается приставка от батареи GB1 с напряжением 9 В ("Корунд" или аналогичные ей) через стабилизатор на транзисторе VT2 и стабилитроне VD3.

Микросхему К561ЛА7 можно заменить на К561ЛЕ5 или К561ЛА9 (исключив DD1.4), транзисторы VT1 и VT2-на любые маломощные кремниевые соответствующей структуры, стабилитрон VD3 заменим на КС156А, КС168А. Диоды VD1, VD2 - любые точечные германиевые, например, Д2, Д9, Д18. Переключатели желательно использовать миниатюрные.


Корпус прибора - самодельный или готовый подходящих размеров. Монтаж деталей (рис. 2) в корпусе - навесной на переключателях, резисторе R4 и гнездах. Вариант внешнего вида показан на рисунке. Разъемы ХЗ-Х5 - самодельные, изготовлены из листовой латуни или меди толщиной 0,1...0,2 мм, конструкция их понятна из рис. 3. Для подключения конденсатора или катушки необходимо ввести выводы детали до упора в клиновидный зазор пластин; этим достигается быстрая и надежная фиксация выводов.


Налаживание прибора производят с помощью частотомера и осциллографа. Переключатель SA1 переводят в верхнее по схеме положение и подбором конденсатора С1 и резистора R1 добиваются частоты 1 МГц на выходе генератора. Затем переключатель последовательно переводят в последующие положения и подбором конденсаторов С2 - С5 устанавливают частоты генерации 100 кГц, 10 кГц, 1 кГц и 100 Гц. Далее осциллограф подключают к коллектору транзистора VT1, переключатель SA2 - в положении измерения емкости. Подбором резистора R3 добиваются формы колебаний, близкой к меандру на всех диапазонах. Затем переключатель SA1 снова устанавливают в верхнее по схеме положение, к гнездам Х6, Х7 подключают цифровой или аналоговый вольтметр, а к гнездам ХЗ, Х4 - образцовый конденсатор емкостью 100 пф. Подстройкой резистора R7 добиваются показаний вольтметра 1 В. Потом переводят переключатель SA2 в режим измерения индуктивности и к гнездам Х4, Х5 подключают образцовую катушку с индуктивностью 100 мкГн, резистором R6 устанавливают показания вольтметра, также равные 1 В.

На этом настройка прибора заканчивается. На остальных диапазонах точность показаний зависит только от точности подбора конденсаторов С2 - С5. От редакции. Налаживание генератора лучше начать с частоты 100 Гц, которую устанавливают подбором резистора R1, конденсатор С5 не подбирают. Следует помнить, что конденсаторы СЗ - С5 должны быть бумажными или, что лучше, метаплопленочными (К71, К73, К77, К78). При ограниченных возможностях в подборе конденсаторов можно использовать и переключение секцией SA1.2 резисторов R1 и их подбор, а число конденсаторов надо уменьшить до двух (С1, СЗ). Номиналы сопротивлений резисторов составят в этом: случав 4,7: 47; 470 к0м.

(Радио 12-98

Список источников по теме ЭПС конденсаторов в журнале «Радио»

Хафизов Р. Пробник оксидных конденсаторов. - Радио, 2003, №10, с.21-22. Степанов В. ЭПС и не только... - Радио, 2005, №8, с.39,42. Васильев В. Прибор для проверки оксидных конденсаторов. - Радио, 2005, №10, с.24-25. Нечаев И. Оценка эквивалентного последовательного сопротивления конденсатора. - Радио, 2005, №12, с.25-26. Щусь А. Измеритель ЭПС оксидных конденсаторов. – Радио, 2006, №10, с. 30-31. Куракин Ю. Индикатор ЭПС оксидных конденсаторов. - Радио, 2008, №7, с.26-27. Платошин И. Измеритель ЭПС оксидных конденсаторов. - Радио, 2008, №8, с. 18-19. Рычихин С. Пробник оксидных конденсаторов. - Радио, 2008, №10, с.14-15. Табаксман В., Фелюгин В. Измерители ЭПС оксидных конденсаторов. - Радио, 2009, №8, с 49-52.

Измеритель ёмкости конденсаторов

В. Васильев, г. Набережные Челны

Это устройство построено на основе прибора, ранее описанного в нашем журнале . В отличие от большинства таких приборов оно интересно тем, что проверка исправности и емкости конденсаторов возможна и без их демонтажа из платы. В эксплуатации предлагаемый измеритель весьма удобен и имеет достаточную точность.

Тот, кто занимается ремонтом бытовой или промышленной радиоаппаратуры, знает, что исправность конденсаторов удобно проверять без их демонтажа. Однако многие измерители емкости конденсаторов такой возможности не предоставляют. Правда, одна подобная конструкция была описана в . Она имеет небольшой диапазон измерения, нелинейную шкалу с обратным отсчетом, что снижает точность. При проектировании же нового измерителя решалась задача создания прибора с широким диапазоном, линейной шкалой и прямым отсчетом, чтобы можно было пользоваться им, как лабораторным. Помимо этого, прибор должен быть диагностическим, т. е. способным проверять и конденсаторы, зашунтированные р-n переходами полупроводниковых приборов и сопротивлениями резисторов.

Принцип работы прибора таков. На вход дифференциатора , в котором проверяемый конденсатор используется в качестве дифференцирующего, подается напряжение треугольной формы. При этом на его выходе получается меандр с амплитудой, пропорциональной емкости этого конденсатора. Далее детектор выделяет амплитудное значение меандра и выдает постоянное напряжение на измерительную головку.

Амплитуда измерительного напряжения на щупах прибора примерно 50 мВ, что недостаточно для открывания р-n переходов полупроводниковых приборов, поэтому они не оказывают своего шунтирующего действия.

Прибор имеет два переключателя. Переключатель пределов "Шкала" с пятью положениями: 10 мкФ, 1 мкФ, 0,1 мкФ, 0,01 мкФ, 1000 пФ. Переключателем "Множитель" (Х1000, Х100, Х10, Х1) меняется частота измерения. Таким образом, прибор имеет восемь поддиапазонов измерения емкости от 10000 мкФ до 1000 пФ, что практически достаточно в большинстве случаев.

Генератор треугольных колебаний собран на ОУ микросхемы DA1.1, DA1.2, DA1.4 (рис. 1). Один из них, DA1.1, работает в режиме компаратора и формирует сигнал прямоугольной формы, который поступает на вход интегратора DA1.2. Интегратор преобразует прямоугольные колебания в треугольные. Частота генератора определяется элементами R4, С1-С4. В цепи обратной связи генератора стоит инвертор на ОУ DA1.4, который обеспечивает автоколебательный режим. Переключателем SA1 можно устанавливать одну из частот измерения (множитель): 1 Гц (Х1000), 10 Гц(х100), 100 Гц(х10), 1 кГц(х1).


Рис. 1

ОУ DA2.1 - повторитель напряжения, на его выходе сигнал треугольной формы амплитудой около 50 мВ, который и используется для создания измерительного тока через проверяемый конденсатор Сх.

Так как емкость конденсатора измеряется в плате, на нем может находиться остаточное напряжение, поэтому для исключения повреждения измерителя параллельно его щупам подключены два встречно-параллельных диода моста VD1.

ОУ DA2.2 работает как дифференциатор и выполняет роль преобразователя ток - напряжение. Его выходное напряжение: Uвых=(R12...R16) Iвх=(R12...R16)Cх dU/dt. Например, при измерении емкости 100 мкФ на частоте 100 Гц получается: Iвх=Сх dU/dt=100 100 мВ/5 мс=2мА, Uвых= R16 Iвх=1 кОм мА=2 В.

Элементы R11, С5-С9 необходимы для устойчивой работы дифференциатора. Конденсаторы устраняют колебательные процессы на фронтах меандра, которые делают невозможным точное измерение его амплитуды. В результате на выходе DA2.2 получается меандр с плавными фронтами и амплитудой, пропорциональной измеряемой емкости. Резистор R11 также ограничивает входной ток при замкнутых щупах или при пробитом конденсаторе. Для входной цепи измерителя должно выполняться неравенство: (3...5)СхR11<1/(2f).

Если это неравенство не выполнено, то за половину периода ток Iвх не достигает установившегося значения, а меандр - соответствующей амплитуды, и возникает погрешность в измерении. Например, в измерителе, описанном в , при измерении емкости 1000 мкФ на частоте 1 Гц постоянная времени определяется как Cх R25=1000 мкФ 910 Ом=0,91 с. Половина же периода колебаний Т/2 составляет лишь 0,5 с, поэтому на данной шкале измерения окажутся заметно нелинейными.

Синхронный детектор состоит из ключа на полевом транзисторе VT1, узла управления ключом на ОУ DA1.3 и накопительного конденсатора С10. ОУ DA1.2 выдает управляющий сигнал на ключ VT1 во время положительной полуволны меандра, когда его амплитуда установлена. Конденсатор С10 запоминает постоянное напряжение, выделенное детектором.

С конденсатора С10 напряжение, несущее информацию о величине емкости Сх, через повторитель DA2.3 подается на микроамперметр РА1. Конденсаторы С11, С12 - сглаживающие. С движка переменного резистора калибровки R22 снимается напряжение на цифровой вольтметр с пределом измерения 2 В.

Источник питания (рис. 2) выдает двухполярные напряжения ±9 В. Опорные напряжения образуют термостабильные стабилитроны VD5, VD6. Резисторами R25, R26 устанавливают необходимую величину выходного напряжения. Конструктивно источник питания объединен с измерительной частью прибора на общей монтажной плате.


Рис. 2

В приборе использованы переменные резисторы типа СПЗ-22 (R21, R22, R25, R26). Постоянные резисторы R12-R16 - типа С2-36 или С2-14 с допустимым отклонением ±1 %. Сопротивление R16 получено соединением последовательно нескольких подобранных резисторов. Сопротивления резисторов R12-R16 можно использовать и других типов, но их надо подобрать с помощью цифрового омметра (мультиметра). Остальные постоянные резисторы - любые с мощностью рассеяния 0,125 Вт. Конденсатор С10 - К53-1 А, конденсаторы С11-С16 - К50-16. Конденсаторы С1, С2 - К73-17 или другие металлопленочные, СЗ, С4 - КМ-5, КМ-6 или другие керамические с ТКЕ не хуже М750, их необходимо также подобрать с погрешностью не более 1 %. Остальные конденсаторы - любые.

Переключатели SA1, SA2 - П2Г-3 5П2Н. В конструкции допустимо применить транзистор КП303 (VT1) с буквенными индексами А, Б, В, Ж, И. Транзисторы VT2, VT3 стабилизаторов напряжения могут быть заменены другими маломощными кремниевыми транзисторами соответствующей структуры. Вместо ОУ К1401УД4 можно использовать К1401УД2А, но тогда на пределе "1000 пФ" возможно появление ошибки из-за смещения входа дифференциатора, создаваемого входным током DA2.2 на R16.

Трансформатор питания Т1 имеет габаритную мощность 1 Вт. Допустимо использовать трансформатор с двумя вторичными обмотками по 12 В, но тогда необходимо два выпрямительных моста.

Для настройки и отладки прибора потребуется осциллограф. Неплохо иметь частотомер для проверки частот генератора треугольных колебаний. Нужны будут и образцовые конденсаторы.

Прибор начинают настраивать с установки напряжений +9 В и -9 В с помощью резисторов R25, R26. После этого проверяют работу генератора треугольных колебаний (осциллограммы 1, 2, 3, 4 на рис. 3). При наличии частотомера измеряют частоту генератора при разных положениях переключателя SA1. Допустимо, если частоты отличаются от значений 1 Гц, 10 Гц, 100 Гц, 1 кГц, но между собой они должны отличаться точно в 10 раз, так как от этого зависит правильность показаний прибора на разных шкалах. Если частоты генератора не кратны десяти, то необходимой точности (с погрешностью 1 %) добиваются подбором конденсаторов, подключаемых параллельно конденсаторам С1-С4. Если емкости конденсаторов С1-С4 подобраны с необходимой точностью, можно обойтись без измерения частот.

В последние годы специалисты и радиолюбители находят полезность оценки эквивалентного последовательного сопротивления (ЭПС) оксидных конденсаторов, особенно в ремонтной практике импульсных БП, высококачественных УМЗЧ и другой современной аппаратуры. В этой статье предлагается измеритель, отличающийся рядом преимуществ.

В последние годы специалисты и радиолюбители находят полезность оценки эквивалентного последовательного сопротивления (ЭПС) оксидных конденсаторов, особенно в ремонтной практике импульсных БП, высококачественных УМЗЧ и другой современной аппаратуры. В этой статье предлагается измеритель, отличающийся рядом преимуществ.

Удобная для прибора со стрелочным индикатором шкала, близкая к логарифмической, позволяет определять значения ЭПС примерно в диапазоне от долей ома до 50 Ом, при этом значение 1 Ом оказывается на участке шкалы, соответствующем 35...50 % тока полного отклонения. Это дает возможность с приемлемой точностью оценивать значения ЭПС в интервале 0,1...1 Ом, что, например, необходимо для оксидных конденсаторов емкостью более 1000 мкФ, а с меньшей точностью — вплоть до 50 Ом.

Полная гальваническая развязка цепи измерения максимально защищает прибор от выхода из строя при проверке случайно заряженного конденсатора — нередкой в практике ситуации. Низкое напряжение на измерительных щупах (менее 70 мВ) позволяет производить измерения в большинстве случаев без выпаивания конденсаторов. Питание прибора от одного гальванического элемента напряжением 1,5 В принято как наиболее оптимальный вариант (низкая стоимость и малые габариты). Нет необходимости калибровать прибор и следить за напряжением элемента, так как предусмотрены встроенный стабилизатор и автоматический выключатель при напряжении питания менее допустимого предела с блокировкой включения. И наконец, квазисенсорное включение и отключение прибора двумя миниатюрными кнопками.

Основные технические характеристики
Интервал измеряемого сопротивления, Ом..........0,1...50
Частота измерительных импульсов, кГц.................120
Амплитуда импульсов на щупах измерителя, мВ........50...70
Напряжение питания, В
номинальное.................1,5
допустимое...............0,9...3
Ток потребления, мА, не более.........................20

Принципиальная электрическая схема прибора приведена на рис. 1

На транзисторах VT1, VT2 и трансформаторе Т1 собран повышающий с 1,5 до 9 В преобразователь напряжения. Конденсатор С1 — фильтрующий.

Выходное напряжение преобразователя подается через электронный выключатель на тринисторе VS1, который, кроме ручного включения и отключения прибора, автоматически выключает его при пониженном напряжении питания, поступает на микромощный стабилизатор, собранный на микросхеме DA1 и резисторах R3, R4. Стабилизированное напряжение 4 В питает генератор импульсов, собранный по типовой схеме на шести элементах И-НЕ микросхемы DD1. Цепь R6C2 задает частоту испытательных импульсов примерно 100...120 кГц. Светодиод HL1 — индикатор включения прибора.

Через разделительный конденсатор СЗ импульсы подаются на трансформатор Т2. Напряжение с его вторичной обмотки приложено к проверяемому конденсатору и к первичной обмотке измерительного трансформатора тока ТЗ. С вторичной обмотки ТЗ сигнал поступает через однополупериодный выпрямитель на диоде VD3 и конденсаторе С4 на стрелочный микроамперметр РА1. Чем больше ЭПС конденсатора, тем меньше отклонение стрелки измерителя.

Тринисторный выключатель действует следующим образом. В исходном состоянии на затворе полевого транзистора VT3 низкое напряжение, так как тринистор VS1 закрыт, вследствие чего цепь питания прибора разъединена по минусовому проводу. При этом сопротивление нагрузки повышающего преобразователя практически бесконечно и он в таком режиме не работает. В этом состоянии ток потребления от элемента питания G1 практически равен нулю.

При замыкании контактов кнопки SB2 преобразователь напряжения получает нагрузку, образованную сопротивлением перехода управляющий электрод—катод тринистора и резистором R1. Преобразователь запускается и его напряжение открывает тринистор VS1. Открывается полевой транзистор VT3, и минусовая цепь питания стабилизатора и генератора через очень малое сопротивление канала полевого транзистора VT3 подключается к преобразователю. Кнопка выключения SB1 при нажатии шунтирует анод и катод тринистора VS1, в результате закрывается и транзистор VT3, выключая прибор. Автоматическое выключение при понижении напряжения батареи происходит, когда ток через тринистор станет меньше тока удержания в открытом состоянии. Напряжение на выходе повышающего преобразователя, при котором это происходит, подбирают таким, чтобы его было достаточно для нормальной работы стабилизатора, т. е. чтобы всегда выдерживалась минимально допустимая разность значений напряжения на входе и выходе микросхемы DA1.

Конструкция и детали

Все детали прибора, за исключением микроамперметра и двух кнопок, располагаются на односторонней печатной плате размерами 55x80 мм. Чертеж платы изображен на рис. 2. Корпус прибора изготовлен из фольгированного гетинакса. Под микроамперметром установлены миниатюрные кнопки от телевизора.

Все трансформаторы намотаны на кольцах из феррита 2000НМ типоразмера К10x6x4,5, но эти размеры не критичны. Трансформатор Т2 имеет две обмотки: первичная — 100 витков, вторичная — один виток. В трансформаторе ТЗ первичная обмотка состоит их четырех витков, а вторичная — из 200 витков. Диаметр проводов обмоток трансформаторов Т2 и ТЗ не критичен, но желательно те, которые входят в измерительную цепь, наматывать более толстым проводом — примерно 0,8 мм, другие обмотки этих трансформаторов намотаны проводом ПЭВ-2 диаметром 0.09 мм.

Транзисторы VT1 и VT2 — любые из серии КТ209. желательно подобрать их с одинаковым коэффициентом передачи тока базы. Конденсаторы можно использовать любые, подходящие по размеру: резисторы — МЛТ мощностью 0.125 или 0.25 Вт. Диоды VD1 и VD2 — любые средней мощности. Диод VD3 — Д311 или любой из серии Д9. Полевой транзистор VT3 — практически любой п-канальный с малым сопротивлением открытого канала и малым пороговым напряжением затвор—исток, для компактности монтажа у транзистора IRF740A удалена часть основания.

Светодиод подойдет любой повышенной яркости, свечение которого видно уже при токе 1 мА.

Микроамперметр РА1 — М4761 от старого катушечного магнитофона, с током полного отклонения стрелки 500 мкА. В качестве щупа использован отрезок экранированного провода длиной 20 см. На него надевают подходящий корпус шариковой авторучки, а к концу центральной жилы и к экранной оплетке провода припаивают тонкие стальные иголки. Иглы временно фиксируют на расстоянии 5 мм друг от друга, на них слегка надвигают корпус щупа и место стыка заливают термоклеем; стык формуют в виде шарика диаметром чуть меньше сантиметра. Такой щуп, на мой взгляд, наиболее оптимален для подобных измерителей. Его легко подсоединять к конденсатору, устанавливая одну иглу на один вывод конденсатора, а другой касаться второго вывода, аналогично работе циркулем.

О налаживании прибора.

Прежде всего проверяют работу повышающего преобразователя. В качестве нагрузки можно временно подключить к выходу преобразователя резистор сопротивлением 1 кОм. Затем временно соединяют перемычкой анод и катод тринистора и выставляют резистором R3 на выходе стабилизатора DA1 напряжение примерно 4 В. Частота генератора должна быть в пределах 100... 120 кГц.

Далее замыкают проводником иголки щупов и регулировкой подстроечным резистором R3 выставляют стрелку микроамперметра чуть ниже максимального положения, затем, пробуя изменить фазировку одной из обмоток измерения, добиваются максимальных показаний прибора и оставляют обмотки в таком подключении. Регулируя резистором R3, устанавливают стрелку на максимум. Подключением к щупам непроволочного резистора сопротивлением 1 Ом проверяют положение стрелки (она должна быть примерно в середине шкалы) и при необходимости, меняя число витков в первичной обмотке трансформатора ТЗ, изменяют растяжение шкалы. При этом всякий раз выставляя на максимум стрелку микроамперметра регулировкой R3.

Наиболее оптимальной представляется шкала, на которой показания ЭПС не более 1 Ом занимают примерно 0,3...0,5 всей ее длины, т. е. свободно различимы показания от 0,1 до 1 Ом через каждые 0,1 Ом. В приборе можно использовать любые другие микроамперметры с током полного отклонения не более 500 мкА: для более чувствительных потребуется уменьшить число витков вторичной обмотки трансформатора ТЗ.

Далее налаживают узел отключения, подбирая резистор R1, вместо него временно можно впаять подстроечный резистор сопротивлением 6,8 кОм. После подачи на вход DA1 питания от внешнего регулируемого источника вольтметром контролируют напряжение на выходе DA1. Следует найти наименьшее входное напряжение стабилизатора, при котором выходное еще не начинает падать — это минимальное рабочее входное напряжение. Нужно иметь в виду, что чем меньше минимальное рабочее напряжение, тем полнее будет использован ресурс элемента питания.

Далее подбором резистора R1 добиваются скачкообразного закрывания тринистора при напряжении питания чуть выше минимально допустимого. Это наглядно видно по отклонению стрелки прибора. Она должна при замкнутых щупах с максимума резко падать до нуля, при этом гаснет светодиод. Тринистор должен закрыться раньше, чем полевой транзистор VT3; в противном случае не будет резкого переключения. Далее повторно проверяют ручное включение и выключение кнопками SB1 и SB2.

В заключение градуируют шкалу измерителя, используя непроволочные резисторы соответствующих номиналов. Использование прибора в практике ремонта показало его большую эффективность и удобство по сравнению с другими подобными приборами. Им также можно с успехом проверять переходное сопротивление контактов различных кнопок, герконов и реле.

Статья взята с сайта www.radio-lubitel.ru

Представляю вашему вниманию, как просто сделать измеритель ЭПС конденсаторов, который собирается всего за пару часов буквально "На коленке". Сразу предупреждаю, что не являюсь автором этой идеи, данную схему уже сотню раз повторили разные люди. В схеме всего десять деталей, и любой цифровой мультиметр, с ним ничего колдовать не нужно, просто подпаиваемся к точкам и все.

О деталях измерителя ЭПС. Трансформатор с соотношением витков 11\1. Первичную обмотку нужно мотать виток к витку на кольце М2000 К10х6х3, на всей окружности кольца (изолированного), вторичку желательно распределить равномерно, с небольшим натягом. Диод D1 может быть любой, на частоту более 100 КГц и напряжение более 40 В, но лучше Шоттки. Диод D2 - супресор на 26 - 36 В. Транзистор - типа КТ3107, КТ361 и аналогичные.

Измерения ЭПС проводить на измерительном пределе 20 В. При подключении разъёма измерительной выносной "головки" прибор "автоматически" переходит в режим измерения ЭПС, об этом свидетельствует показание примерно 36 В прибора на пределе 200 В и 1000 В (зависит от применённого супрессора), а на пределе 20 В - показание "выход за предел измерения".

При отключении разъёма измерительной выносной "головки" прибор автоматически переходит штатный режим мультиметра.

Итого: включаем адаптер - автоматом включается измеритель, выключили - штатный мультиметр. Теперь калибровка, ничего заумного, обычный резистор (не проволочный) подгоняем шкалу. Вот примерно как это выглядело: