Принципиальная электрическая схема ибп. Мощный источник бесперебойного питания своими руками

Источник бесперебойного питания


Во многих регионах сегодня часто практикуют плановые и внеплановые отключения электроэнергии на довольно длительный срок. В результате люди, привыкшие к информационному изобилию, на некоторое время оказываются в своеобразном вакууме, когда не только нет освещения, но и не работают телевизор, радиоприемник, компьютер. В таких случаях очень полезно иметь альтернативный источник энергии. Им может стать аккумуляторная батарея, если снабдить ее преобразователем постоянного напряжения в переменное (инвертором) и автоматикой, контролирующей исправность сети, степень заряженности батареи, а также своевременно переключающей нагрузку на питание от сети или батареи и управляющей подзарядкой последней.

В настоящее время в продаже имеются импортные источники бесперебойного питания (ИБП, по-английски UPS) производства различных фирм. Как правило, они предназначены для предотвращения сбоев компьютеров и потери хранящихся в них ценных данных в условиях ненадежного электроснабжения. Однако подобные ИБП рассчитаны на питание нагрузок активного или активно-емкостного характера, а емкости их аккумуляторной батареи хватает всего на несколько минут работы компьютера. Схема и конструкция доступных по цене импортных ИБП таковы, что их практически невозможно приспособить, например, для питания телевизора в течение нескольких часов.

ИБП с необходимыми параметрами можно сделать самостоятельно. Такой прибор должен обеспечивать бесперебойное питание нагрузки мощностью до 300 Вт. Этого достаточно, чтобы "потянуть" любой телевизор, от переносного до "мастодонта" УЛПЦТ. В качестве резервного источника целесообразно воспользоваться автомобильной аккумуляторной батареей емкостью 55...60 А-ч, приобрести которую не составляет труда. Те же, у кого имеется легковой автомобиль, такой батареей уже располагают.

Время непрерывного питания нагрузки от аккумуляторной батареи несложно подсчитать по формуле: T=kQU/P, где Т — время непрерывной работы, ч; к=0,8...0,9 — КПД инвертора; Q — емкость батареи, А-ч; U — напряжение батареи, В; Р — мощность нагрузки Вт.

При указанных выше исходных данных оно составит немногим более двух часов, а с нагрузкой меньшей мощности соответственно увеличится. Например, компьютер обычной конфигурации с процессором Pentium 166MMX сможет работать от аккумуляторной батареи почти шесть часов.

Желательно, чтобы форма выходного напряжения ИБП в любом режиме работы оставалась синусоидальной. Но чтобы достичь этого, пришлось бы пойти на заметное увеличение массы и стоимости прибора. Практика показала, что обычные бытовые электроприборы нормально работают и при питании импульсным напряжением прямоугольной формы, затраты на формирование которого значительно меньше. В случае крайней необходимости можно подключать нагрузку к ИБП через феррорезонансный стабилизатор, который, пропуская первую гармонику импульсного напряжения, подавит все остальные. Для защиты аккумуляторной батареи и элементов ИБП от перегрузок, особенно в стартовых режимах, нужна как быстродействующая электронная защита по току, так и более инерционная с помощью плавкой вставки.

Разработанный с учетом изложенного, предлагаемый ИБП при напряжении питающей электросети в пределах 165...242 В работает как ступенчатый регулятор, поддерживая на выходе напряжение 220 В +10 %. В отличие от импортных приборов, большинство которых реагирует только на понижение напряжения, он автоматически переходит в режим питания нагрузки от аккумуляторной батареи при выходе напряжения в сети за указанные пределы в любую сторону. Процесс переключения занимает не более 20 мс, после чего на выходе ИБП появляется импульсное напряжение частотой 50 Гц, действующее значение которого поддерживается равным 220 В +10 %, пока в сети не восстановится нормальное напряжение или батарея не разрядится до 10,8 В. В последнем случае питание на грузки прекращается, так как для батареи опасна дальнейшая разрядка. Автоматический возврат в режим ступенчатого регулятора происходит спустя приблизительно секунду после восстановления нормального напряжения в сети.

Схема ИБП изображена на рис. 1. При его разработке было решено использовать во всех режимах работы один и тот же трансформатор Т2. Это потребовало применить дополнительные коммутирующие цепи и более сложное устройство управления, но значительно улучшило массогабаритные показатели ИБП и уменьшило его стоимость.


Узел А1 через понижающий и развязывающий трансформатор Т1 постоянно контролирует напряжение в электрической сети, к которой подключена вилка ХР1. В зависимости от величины напряжения узел формирует сигнал СЕТЬ ИСПРАВНА и команды на включение реле К1 и К2.

Далее через электронный выключатель — диодный мост VD7—VD10 с оптотиристором U1 в диагонали — сетевое напряжение поступает на последовательно соединенные обмотки IV и V или только на обмотку IV трансформатора Т2 (в зависимости от положения контактов реле К2). Узел А6 контролирует по падению напряжения на резисторе R12 зашунтированном диодом VD11, ток, протекающий через оптотиристор U1, и при его отсутствии формирует сигнал ТОКА НЕТ, необходимый для работы автоматики ИБП. На выходную розетку XS1, к которой подключают нагрузку, напряжение поступает с обмоток IV и V трансформатора Т2.

Степень заряженности аккумуляторной батареи GB1 по ее напряжению контролирует узел A3. Обнаружив, что напряжение ниже 12,9 В, он, если сеть исправна, подает команду ЗАРЯДКА и отменяет ее после того, как в результате подзарядки напряжение возросло до 14,3 В. Если сеть неисправна и нагрузка питается от аккумуляторной батареи, узел A3 не допускает чрезмерной разрядки последней и при напряжении менее 10,8 В разрывает цепь обмотки реле К переводя ИБП в дежурный режим.

Инвертор состоит из мощного двухтактного выходного каскада на полевых транзисторах VT3—VT9 и драйвера А5 формирующего импульсы, подаваемые на их затворы. В стоковые цепи каждой группы транзисторов включены соединенные последовательно половины обмоток I и III трансформатора Т2. Его обмотка II, диодный мост VD12—VD15 и транзистор VT9 предназначены для формирования пауз между импульсами выходного напряжения. При номинальном напряжении батареи GB1 (12,6 В) длительность паузы равна примерно половине длительности импульса, что соответствует минимуму третьей гармоники в спектре выходного напряжения инвертора. Действующее значение такого напряжения в 1,23 раза меньше амплитудного (у синусоиды это соотношение равно 1,41).

В зависимости от степени заряженности батареи GB1 ее напряжение и пропорциональная ему амплитуда выходного напряжения изменяются на 30 %, однако действующее значение последнего за счет широтно-импульсной модуляции (ШИМ) поддерживается почти неизменным, что благоприятно сказывается на работе осветительных и электронагревательных приборов, в том числе нитей накала электронных ламп и кинескопов. Практика показала, что изменение в широких пределах амплитуды питающего напряжения практически не влияет на работу телевизоров и компьютеров, блоки питания которых снабжены, как правило, стабилизаторами напряжения.

Для оксидных конденсаторов характерны повышенные потери, обусловленные тем, что одной из обкладок служит электролит со сравнительно большим активным объемным сопротивлением. Поэтому при повторении конструкции с конденсаторами, отличающимися от рекомендуемых, необходимо учитывать рекомендации, изложенные в , и характеристики конденсаторов используемого типа.

В выпрямительный мост зарядного устройства кроме диодов VD16, VD17 входят оптотиристоры U2, U3, поэтому оно работает, когда через излучающие диоды последних протекает ток, и выключено в противном случае. Цепи управления зарядным устройством и другими узлами ИБП находятся в узле автоматики А4.

Если прибор подключен к сети и напряжение в ней находится в пределах 165...242 В, после замыкания контактов выключателя SA2 "Вкл." узел А1 подаст команду на включение реле К1, замкнувшиеся контакты которого включат ИБП и последний перейдет в режим ступенчатого регулятора напряжения. Кнопка SB1 "Пуск" служит для пуска ИБП в отсутствие нормального напряжения в сети. После нажатия на эту кнопку на все узлы ИБП непосредственно от аккумуляторной батареи GB1 или через стабилизатор А2 поступает напряжение питания. Если напряжение аккумуляторной батареи выше 12,2 В, узел A3 через замкнутые контакты выключателя SA1 включит реле К1. Теперь кнопку SB1 можно отпустить. Выключив SA1 можно запретить работу ИБП при неисправной сети. Так поступают, если в резервном питании нет необходимости, например, когда все нагрузки отключены, а сам ИБП остается включенным в сеть, периодически подзаряжая аккумуляторную батарею.

При исправной сети через излучающий диод оптотиристора U1 протекает ток и на розетку XS1 поступает напряжение. Работа инвертора заблокирована низким уровнем сигнала РАЗРЕШЕНИЕ, сформированным в узле автоматики А4. Если напряжение в сети ниже 195 В, по сигналу узла А1 срабатывает реле К2 и трансформатор Т2 превращается в автотрансформатор, повышающий напряжение на нагрузке в 1,2 раза. В результате оно остается равным 220 В +10 %.

После выхода напряжения в сети за допустимые пределы нельзя включать инвертор ИБП, не дождавшись закрывания тиристора U1, которое произойдет не ранее, чем упадет почти до нуля ток, обусловленный энергией, накопленной в индуктивностях трансформатора 2 и нагрузки. Указанное обстоятельство делает невозможной обычную синхронизацию задающего генератора инвертора с напряжением в сети и вынуждает выбирать момент смены режима работы ИБП с учетом остаточной индукции в магнитопроводе трансформатора Т2 (магнитопроводы индуктивных элементов нагрузки находятся в аналогичных условиях).

Об организации процесса переключения будет подробно рассказано в разделе, посвященном работе узла автоматики А4.

Узел контроля напряжения в сети (А1) собран по схеме, изображенной на рис. 2. Напряжение, пропорциональное сетевому, поступает с обмотки II трансформатора Т (см. рис. 1) на выпрямительный мост VD19 и далее, превратившись в пульсирующее, на три идентичных компаратора, собранных на КМОП микросхемах DD1—DD3. Результат обработки выходных сигналов компараторов на микросхемах DD1 и DD2 — логический уровень на выходе параллельно соединенных элементов DD2.5, DD2.6. Высокий свидетельствует о том, что сетевое напряжение находится а пределах 165...242 В, низкий — вышло за них. В последнем случае конденсатор С24 быстро разряжается через диод VD29 и логический уровень на выходе триггера Шмитта из элементов DD4.1—DD4.3 становится низким, сообщая всем узлам ИБП, что условие СЕТЬ ИСПРАВНА не выполняется.


После восстановления в сети нормального напряжения и высокого логического уровня на выходах элементов DD2.5, DD2.6 диод VD29 закрывается, конденсатор С24 начинает медленно заряжаться через резистор R42 В результате с задержкой примерно в 1 с будет установлен высокий уровень сигнала СЕТЬ ИСПРАВНА. Задержка необходима, чтобы питание нагрузки ИБП от аккумуляторной батареи прекратилось лишь после окончания возможных переходных процессов в сети. Выходной сигнал элементов DD2.5, DD2.6 управляет также реле К1 (см. рис. 1) через ключ на транзисторе VT10.

Чтобы в режиме ожидания не разряжать аккумуляторную батарею, микросхемы DD1 и DD2 узла А1 питаются непосредственно от сети через трансформатор Т1, диодный мост VD19, диод VD18 и стабилизатор на элементах R19, VD20.

Порог срабатывания компаратора на микросхеме DD3 соответствует напряжению в сети 195 В. Если оно меньше, элемент DD5.1 замыкает цепь питания обмотки реле К2 и оно переключает обмотки трансформатора Т2 (см. рис. 1). Чтобы это происходило только при исправной сети, на один из входов элемента DD5.1 подан сигнал СЕТЬ ИСПРАВНА с выходов элементов DD4.2, DD4.3.

Говоря о напряжении в сети, обычно имеют в виду его эффективное (действующее) значение, прямое измерение которого затруднительно. Форма переменного напряжения в сети достаточно близка к синусоидальной (коэффициент гармоник обычно не превышает 6 %), его амплитуда Um и действующее значение Uэфф, связаны между собой соотношением Uэфф=0,707Um. Поэтому достаточно следить за амплитудой. Сложность состоит в том, что синусоида достигает амплитудного значения кратковременно, а выходной сигнал компаратора должен быть непрерывным.

Так как все три компаратора идентичны, разберем работу одного из них — на микросхеме DD1. Как только мгновенное значение напряжения превысит порог срабатывания триггера Шмитта на элементах DD1.1, DD1.2, он через диод VD24 разрядит конденсатор С20, что приведет к срабатыванию и второго триггера Шмитта на элементах DD1.3 и DD1.4. Однако, после уменьшения мгновенного значения напряжения до величины, меньшей порога отпускания первого триггера, второй останется сработавшим, пока конденсатор С20 не зарядится через резистор R32.

Номиналы этих элементов выбраны таким образом, что задержка отпускания второго триггера немного больше 10 мс — половины периода сетевого напряжения. Поэтому, пока амплитуда контролируемого напряжения выше порога, разрядка конденсатора С20 повторяется в каждом полупериоде и напряжение на нем не успевает достичь порога отпускания второго триггера. На выходе элемента DD1.4 сохраняется постоянный высокий уровень. Он сменится низким, если амплитуда входного напряжения уменьшилась и в очередном полупериоде конденсатор С20 успел зарядиться.

Характеристики цифровых микросхем серии К561, на которых собраны компараторы, достаточно стабильны . В температурном диапазоне +15...35 "С, свойственном жилым помещениям, установленные пороги изменяются не более чем на 0,6 %, что для ИБП вполне достаточно.

Стабилизатор напряжения +5 В (А2) предназначен для питания всех цифровых микросхем ИБП, за исключением DD1 и DD2. Его схема показана на рис. 3. Интегральный стабилизатор DA1 включен по стандартной схеме. Конденсаторы С27—С44 — блокировочные. Их устанавливают в непосредственной близости от выводов питания каждой из микросхем.

Узел контроля напряжения батареи (A3). Схема узла изображена на рис. 4. В качестве компараторов применены таймеры К1006ВИ1 (DA2 DA3). Резисторы R50—R58 задают их пороги срабатывания и отпускания. Конденсаторы С45 и С47 служат для подавления импульсных помех. Пока напряжение аккумулятора выше 10,8 В, открыт внутренний транзистор микросхемы DA2, коллектор которого соединен с выводом 7. Как только оно станет меньшим указанного, транзистор закроется и повторно откроется только после повышения напряжения батареи до 12,2 В.


Работа аналогичного компаратора на микросхеме DA3 разрешена только при высоком уровне поступающего на ее вход RS сигнала СЕТЬ ИСПРАВНА. Выходной сигнал компаратора включает и выключает устройство подзарядки аккумуляторной батареи. Пороги срабатывания и отпускания равны соответственно 12,9 и 14,3 В.

Узел автоматики (А4). Чтобы после отключения сети инвертор ИБП включился в правильной фазе, необходимо знать направление остаточной индукции в магнитопроводе трансформатора Т2. Как известно, напряжение на обмотке трансформатора пропорционально скорости изменения магнитной индукции в его магнитопроводе. Поэтому ее можно измерить косвенно, проинтегрировав напряжение. Эту операцию выполняет интегрирующая цепь R59C49C50C51 (рис. 5). Диоды VD31, VD32 защищают оксидные конденсаторы С50, С51 от напряжения неправильной полярности.


Когда пропорциональное индукции напряжение на выходе интегрирующей цепи положительно, транзистор VT11 открыт, триггер DD6.1 установлен в состояние, соответствующее лог. 1 на его выводе 5. В противном случае транзисторы VT12 и VT13 будут открыты, а состояние триггера — противоположное. Таким образом, логический уровень на выходе триггера однозначно связан с направлением магнитного потока в магнитопроводе трансформатора Т2. После отключения сети триггер DD6.1 остается в состоянии, соответствующем остаточной индукции.

Ключ на транзисторе VT14 формирует прямоугольные импульсы из сетевого напряжения, поступающего на его вход со вторичной обмотки трансформатора Т1 (см. рис. 1). Элемент DD7.1 сравнивает их фазу с фазой индукции. При совпадении высокий логический уровень на его выходе и такой же — сигнала СЕТЬ ИСПРАВНА устанавливают триггер режима DD6.2 через элемент DD8.1 в состояние, соответствующее работе ИБП от сети. В результате низкий уровень сигнала РАЗРЕШЕНИЕ запрещает работу инвертора. Одновременно логические элементы DD8.3, DD11.1, DD12.1 и DD12.2 формируют сигналы, включающие оптотиристор U1 электронного выключателя, а при высоком уровне сигнала ЗАРЯДКА — также оптотиристоры U2 и U3 (см. рис. 1).
{mospagebreak}
Лог. 1 на выходе элемента DD7.2 появляется при совпадении фаз индукции и колебаний задающего генератора инвертора. Однако для переключения триггера DD6.2 и перехода ИБП в режим работы от аккумуляторной батареи этого недостаточно. Логический узел, в который входят диоды VD33 и VD34 с резистором R67, элементы DD4.4—DD4.6, DD8.2, гарантирует, что переключение произойдет только при низком уровне сигнала СЕТЬ ИСПРАВНА, при высоком — НЕТ ТОКА и обязательно в момент выдачи задающим генератором инвертора очередного импульса.

При изменении уровня сигнала РЕЖИМ на выходе элемента DD7.3 образуются импульсы, разрешающие приблизительно на 1 с работу генератора на элементах микросхемы DD9. В результате пьезоизлучатель BQ1 подает звуковые сигналы, сообщающие о смене режима работы ИБП, причем в случае отключения сети сигнал звучит немного дольше, чем при ее восстановлении.

Драйвер инвертора (А5) построен по схеме, изображенной на рис. 6. Микросхема DA4 — задающий генератор. Схема ее включения — типовая для таймера К1006ВИ1, она подробно описана в . При низком уровне сигнала РЕЖИМ частота повторения генерируемых импульсов равна 100 Гц. В противном случае параллельно времязадающим резисторам R76 и R77 генератора через открытый диод VD35 подключен сравнительно низкоомный резистор R75 и частота повышена приблизительно до 2500 Гц. Следовательно, нужная в момент перехода ИБП к питанию нагрузки от аккумуляторной батареи фаза колебаний задающего генератора наступит быстрее.

Как уже было сказано, действующее значение выходного напряжения инвертора стабилизировано с помощью ШИМ. Напряжение аккумуляторной батареи через стабилитрон VD38 и фильтр R84C56 питает времязадающую цепь одновибратора собранного на микросхеме DA5. В результате длительность импульсов, генерируемых им в ответ на каждый импульс задающего генератора, уменьшается с увеличением этого напряжения. Смещение, создаваемое стабилитроном VD38, приближает эту зависимость к требующейся для стабилизации действующего значения выходного напряжения, а резистор R82 увеличивает до необходимого значения ток, протекающий через стабилитрон.

Триггер DD13.2 делит частоту импульсов задающего генератора на два. В итоге импульсы одновибратора через логические элементы DD10.3, DD10.4. DD11.3, DD11.4 и ключи на транзисторах VT19, VT20 с частотой 50 Гц поочередно поступают на затворы силовых транзисторов VT3— VT5 и VT6—VT8 (см. рис. 1) и открывают их. В паузах между импульсами транзистор VT9 открыт, сигнал на его затвор подан через элементы DD8.4 и DD11.2 и транзисторный ключ VT18. Работа инвертора может быть заблокирована низким уровнем сигнала РАЗРЕШЕНИЕ. В этом состоянии отпирающие импульсы отсутствуют на затворах всех силовых транзисторов.

Узел токовой защиты силовых транзисторов состоит из диодов VD36, VD37, резисторов R79—R81, R83, транзистора VT17 и триггера DD13.1. При нормальной работе инвертора транзистор VT17 закрыт. Триггер DD13.1, благодаря импульсам задающего генератора, поступающим на его вход S, находится в состоянии, соответствующем высокому уровню на выходе. Напряжение в точке соединения анодов диодов VD36 и VD37 линейно связано с меньшим из напряжений на стоках транзисторов, к которым подключены их катоды (диод, соединенный с теми стоками, где напряжение больше, оказывается закрытым).

Меньшее напряжение — всегда на стоках открытых в данный момент транзисторов и пропорционально протекающему в их каналах току. Номиналы резисторов R79—R81 подобраны таким образом, чтобы при увеличении тока до 120 А напряжение на базе транзистора VT17 достигло порога его открывания. В результате низкий логический уровень с коллектора открывшегося транзистора поступит на вход R триггера DD13.1 и переключит его. Уровни на выходах триггера и элемента DD10.2 станут низкими. Этим будет оборван открывающий импульс на затворах силовых транзисторов, что приведет к их защитному отключению.

Закрытыми все транзисторы останутся только до очередного импульса задающего генератора, который поступит на вход S триггера DD13.1 в начале следующего полупериода. Длительность импульса — 200 мкс, и все это время уровень на выводе 5 триггера будет высоким независимо от состояния входа R. Достигаемая таким образом кратковременная блокировка токовой защиты позволяет ИБП устойчиво работать на нагрузки емкостного характера (например, бестрансформаторные блоки питания электронной аппаратуры), но исключает повреждения, вызванные коротким замыканием нагрузки.

Узел контроля тока (А6), схема которого показана на рис. 7, поддерживает на своем выходе низкий уровень сигнала НЕТ ТОКА, пока мгновенное значение протекающего через электронный выключатель тока не снизится до величины, достаточной для закрывания оптотиристора U1 (см. рис. 1). Датчиком служит резистор R11, включенный последовательно с U1 Диод VD11 необходим для ограничения излишнего падения напряжения на резисторе при рабочих значениях тока. Оптрон U4 изолирует выходную цепь узла от остальных его цепей, находящихся под сетевым напряжением. Пока через резистор R11 течет ток, будут открыты транзистор VT21 и фототранзистор оптрона U4, излучающий диод которого включен в коллекторную цепь транзистора VT21.



Для питания узла служит специально предусмотренная обмотка VI трансформатора Т2 напряжение которой выпрямляет диодный мост VD40 и стабилизирует цепь R99VD41. Основная функция конденсатора С59 — сглаживать пульсации выпрямленного напряжения. Однако запасенной в нем энергии достаточно для питания узла контроля тока при смене режима ИБП, когда напряжения в сети уже нет, а инвертор еще не работает.

Детали и конструкция. Большинство деталей, кроме силовых и крупногабаритных, размещено на общей печатной плате без деления на функциональные узлы. Выключатели SA1, SA2, кнопка SB1, светодиоды HL1—HL4, розетка XS1 находятся на передней, а клеммы для подключения аккумуляторной батареи GB1 и держатели плавких вставок FU1, FU2 — на задней или боковых панелях ИБП.

Тепловыделяющие элементы установлены на шести теплоотводах из алюминиевого листа толщиной не менее 3 мм. Ниже перечислены детали, находящиеся на каждом из них, в скобках — размеры теплоотвода в миллиметрах: VT3—VT5 (150x50); VT6—VT8 (150x50); VT9, VD12—VD15 (150x50); U2, VD16 (150x80); U3. VD17 (150x80); DA1 (30x30).

В качестве VT3—VT9 вместо указанных на схеме транзисторов IRFZ44 подойдут КП723А или другие структуры MOSFET с индуцированным п каналом максимальным током стока не менее 40 А, максимальным напряжением сток-исток не менее 55 В и сопротивлением открытого канала не более 0,025 Ом. Остальные транзисторы можно заменять любыми маломощными биполярными соответствующей структуры.

Конденсаторы С2, С4—С6 — пленочные К73-17, остальные (за исключением оксидных) — любые керамические, например, КМ-5, КМ-6 или К10-17. Оксидные конденсаторы — К50-ЗБ, К50-6, К50-16. Особого внимания требуют конденсаторы С7—С14. Через них протекает переменный ток приблизительно 5,5 А. Расчет показывает, что при этом внутренняя температура конденсаторов К50-6, имеющих указанные на рис. 1 рабочее напряжение и емкость, останется в допустимых пределах при температуре окружающего воздуха не более 50 С, что вполне приемлемо для прибора, эксплуатируемого в жилом помещении. Если таких конденсаторов не нашлось, вместо них следует установить большее число конденсаторов меньшей емкости, сохранив суммарную неизменной. Уменьшать число параллельно соединенных конденсаторов за счет увеличения емкости каждого в данном случае недопустимо. Нельзя применять и конденсаторы, рассчитанные на постоянное напряжение менее 50 В.

К трансформатору Т1 предъявляются особые требования. Его первичная обмотка, постоянно включенная в сеть, должна длительное время выдерживать повышенное вплоть до 380 В напряжение. По этой причине в изготовленном автором ИБП применен трансформатор 380/26 В от прибора, предназначенного для контроля наличия трехфазного напряжения. Если подобного найти не удастся, следует взять два одинаковых маломощных трансформатора 220/9 В (например, от сетевых блоков питания радиоприемников или игровых видеоприставок) и соединить их первичные и вторичные обмотки последовательно. Различие в коэффициенте трансформации легко учитывается при настройке компараторов узла А1. Данные для самостоятельного изготовления трансформатора Т1: магнитопровод — Ш12x16, обмотка I — 6910 витков провода ПЭВ-2 0,06. обмотка II — 473 витка провода ПЭВ-2 0,21..

Магнитопровод трансформатора Т2 — ленточный ШЛ32х50. Обмотки наматывают в порядке возрастания указанных на схеме (см. рис. 1) номеров. Обмотки I и III содержат по 24 витка медной шины сечением 10 мм. Обмотка II — 44 витка провода ПЭВ-2 1,62, IV — 446 витков провода ПЭВ-2 0,9, V — 90 витков провода ПЭВ-2 0,9, VI — 44 витка провода ПЭВ-2 0,38. Каждый намотанный слой уплотняют с помощью киянки и упора, затем пропитывают изоляционным лаком (в крайнем случае клеем БФ). Между обмотками III и IV, а также V и VI обязательно делают изолирующие прокладки. Готовую катушку сушат в термошкафу по технологии, соответствующей примененному пропиточному материалу.

Дроссель L1 намотан проводом ПЭВ-2 0,72 до заполнения полости броневого магнитопровода Б-36 из феррита 2000НМ. При сборке между ферритовыми чашками вставляют прокладку толщиной 0,5 мм из немагнитного материала (например, бумаги).

Реле К1 — РЭС15 паспорт РС4.591.004 или подобное ему на 12 В, К2 — импортное JZC-20F (4088) 10ADC12V с сопротивлением обмотки 400 Ом. Вместо него подойдут реле РП21, РПУ-2 с рабочим напряжением 12 В и контактами, рассчитанными на коммутацию переменного тока до 10 А при напряжении 220 В. BQ1 — пьезокерамический звукоизлучатель любого типа. В качестве плавкой вставки RJ1 можно применить отрезок медного провода диаметром 0,72 и длиной 15...20мм.

Налаживание ИБП. Для его проведения необходимы регулируемые источники постоянного (0...15 В, 1 А) и переменного (0...250 В, 1 А, 50 Гц) напряжения, осциллограф, амперметр постоянного тока на 10 А, вольтметры постоянного (0...15 В) и переменного (0...300В) напряжения. При работе с переменным током высокого напряжения следует соблюдать меры предосторожности.

Вольтметр переменного напряжения должен быть электромагнитной системы, например, щитовой Э377. Приборы других систем, в том числе обычные авометры при измерении импульсного напряжения, генерируемого инвертором, дают показания, совершенно не соответствующие действительности.

Налаживание начинают после сборки и проверки монтажа ИБП, не подключая к нему трансформатор Т2 и аккумуляторную батарею GB1. Вместо обмоток трансформатора между стоками транзисторов VT3—VT5, VT6—VT8 и цепью +12 В временно включают резисторы мощностью не менее 1 Вт (например, МЛТ-1) и сопротивлением 470... 1000 Ом. Аналогичный резистор устанавливают между этой цепью и стоком транзистора VT9. К ней же в обход контактов выключателя SA1 и реле К1 подключают регулируемый источник постоянного напряжения.

Прежде всего проверяют стабилизатор напряжения +5 В (DA1). Оно должно оставаться практически неизменным при регулировке напряжения источника в пределах 10...15 В. Затем, подключив осциллограф к выводу 3 микросхемы DA2, с помощью резистора R50 добиваются, чтобы при напряжении ниже 10,8 В низкий логический уровень здесь сменялся высоким. После этого устанавливают в цепи +12 В напряжение 12,6 В и подключают источник переменного напряжения к обмотке I трансформатора Т1, предварительно отключив ее от всех других цепей. Регулируя переменное напряжение в пределах 160...250 В, убеждаются в неизменности напряжения на стабилитроне VD20, которое должно оставаться равным приблизительно 5,6 В.

Подключив осциллограф к выводу 8 микросхемы DD1, с помощью резистора R15 добиваются, чтобы низкий уровень сменялся высоким при превышении переменным напряжением значения 242 В. Возможно, для этого потребуется подобрать номинал резистора R17. Переключение должно быть четким, без "дребезга", в противном случае установите резистор R31 немного большего номинала. Аналогичным образом регулируют компараторы на микросхемах DD2 и DD3, добиваясь их срабатывания при напряжениях соответственно 165 и 195 В. Вместе с компаратором на микросхеме DD3 должно срабатывать реле К2.

Далее устанавливают напряжение источника переменного тока равным 220 В и подключают осциллограф к выводу 3 микросхемы DA3. Вращая ось подстроечного резистора R55, добиваются, чтобы при повышении напряжения в цепи +12 В выше 14,3 В высокий логический уровень на этом выводе сменился низким. Одновременно должен погаснуть светодиод HL4. При напряжении на первичной обмотке трансформатора Т1 более 242 или менее 165 В должен гореть светодиод HL2, сигнализирующий, что ИБП находится в режиме питания нагрузки от аккумуляторной батареи.

Подключив осциллограф к выводу 3 микросхемы DA2, убеждаются в наличии здесь импульсов с частотой повторения приблизительно 2500 Гц. Снова установив переменное напряжение равным номинальному (220 В), убеждаются, что светодиод HL2 погас, а частота колебаний мультивибратора DA2 уменьшилась до 100 Гц. Ее можно установить точно, синхронизировав развертку осциллографа с сетью и добившись с помощью подстроечного резистора R76, чтобы осциллограмма импульсов на экране была неподвижна.

Осциллограммы напряжений на стоках транзисторов VT3—VT9 должны соответствовать показанным на рис. 8. Функционирование токовой защиты проверяют, удалив диоды VD36 и VD37. Отрицательные импульсы на стоках транзисторов VT3— VT5 и VT6—VT8 после этого должны стать очень узкими. По окончании проверки не забудьте установить диоды на место.

Первое включение ИБП рекомендуется производить, подключив к нему аккумуляторную батарею через амперметр и установив в качестве FU1 плавкую вставку с током срабатывания 5... 10 А. Не вставляя вилку ХР1 в сетевую розетку, устанавливают выключатель SA2 в положение "Вкл." и нажимают на кнопку SB1 "Пуск". Должны загореться светодиоды HL3 "Вкл." и HL2 "Аккумулятор". То, что инвертор ИБП заработал, можно определить по характерному звуку, издаваемому трансформатором Т2. Ток разрядки аккумулятора без нагрузки не должен превышать 0,4 А.

Подключив к розетке XS1 вольтметр, с помощью подстроечного резистора R86 добиваются, чтобы он показал 220 В. Более точно номинальное выходное напряжение инвертора можно установить, пользуясь лампой накаливания мощностью 50... 150 Вт. Поочередно подключая ее к розетке XS1 и к выходу регулируемого автотрансформатора с напряжением, равным 220 В, устанавливают ось резистора R86 в положение, при котором яркость свечения лампы одинакова в обоих случаях.

Затем вставляют вилку ХР1 в сетевую розетку. Через секунду после этого инвертор должен автоматически выключиться, а ИБП — перейти в режим ступенчатой регулировки сетевого напряжения. При смене режима гаснет светодиод HL2 "Аккумулятор", зажигается светодиод HL1 "Сеть" и раздается звуковой сигнал. Если напряжение аккумуляторной батареи менее 12,9 В, светодиод HL4 "Зарядка" должен зажечься, а амперметр — показать ток зарядки 4...6 А.

Если напряжение батареи окажется выше указанного, зарядное устройство не включится. Для его проверки батарею придется частично разрядить, подключив к розетке XS1 нагрузку мощностью не менее 50 Вт, отключив вилку ХР1 от сети и дав ИБП поработать в этом режиме, пока напряжение аккумуляторной батареи не снизится до 12 В После этого вновь вставив вилку ХР1 в розетку, убеждаются, что аккумуляторная батарея начала заряжаться. Когда ее напряжение возрастет до 14,3 В, зарядка автоматически прекратится. Закончив все проверки, устанавливают в ИБП плавкую вставку FU1 на ток 50 А и приступают к его полноценной эксплуатации.

ЛИТЕРАТУРА
1. Евсеев А. Автоматическое зарядное устройство для аккумуляторных батарей: Сб.: "В помощь радиолюбителю", вып. 83, с. 12-17. - М.: ДОСААФ. 1983.
2. Найвельт Г. Источники электропитания радиоэлектронной аппаратуры. — М.:Радио и связь, 1986.
3. Ануфриев Ю Гусев В., Смирнов В. Эксплуатационные характеристики и надежность электрических конденсаторов. — М.: Энергия, 1976.
4. Зельдин Е. Цифровые интегральные микросхемы в информационно-измерительной аппаратуре. — Л.: Энергоатомизда, 1986.
5. Трейстер Р. Радиолюбительские схемы на ИС типа 555. — М.: Мир. 1988.
6. Микросхемы для бытовой радиоаппаратуры. Справочник. — М.: Радио и связь, 1989.
В. ВОЛОДИН, г. Одесса, Украина
Радио 5-6 2001

Вся радиоэлектронная техника требует электропитания, и чаще всего мы используем сеть промышленного тока 220V, 50 Гц.
Но иногда могут возникнуть "форс-мажорные" ситуации когда электричество вдруг внезапно "вырубили". Если внезапное отключение электроэнергии для бытовой аппаратуры не сильно страшно, то для, к примеру, компьютеров это может привести к необратимым последствиям: недоустановленные программы, потеря информации и так далее.

Если в крупных городах с электропитанием все более-менее стабильно, но вот в сельской местности это довольно частое явление...
Чтобы избежать досадных недоразумений связанных с внезапным отключением электроэнергии многие производители рекомендуют пользоваться источниками бесперебойного питания (или как их просто называют бесперебойники ). Они, конечно-же выпускаются промышленностью, но такой источник можно собрать самостоятельно .

Кроме обеспечения защиты в случае отключения электроэнергии, источник бесперебойного питания может пригодится и в "полевых" условиях, когда возникнет необходимость получить 220 Вольт от аккумулятора 12 Вольт .

У нас на сайте уже была рассмотрена подобная схема, позволяющая получить 220 Вольт из 12-ти, вот она , здесь-же представлена очередная схема, взятая из журнала Радиолюбитель, №2, 1999 год.

Самодельный источник бесперебойного питания схема

Источник бесперебойного питания обеспечивает:

В прямом режиме преобразование постоянного напряжения 12 В в переменное 220 В/50 Гц при максимальном потребляемом токе не более 6 А. Выходная мощность -до 220 Вт (1 А):

Обратный режим (режим заряда аккумулятора). При этом ток заряда - до 6 А; .

Быстрое переключение из прямого в обратный режим.

Схема ИБП приведена на рисунке. На элементах VT3, VT4, R3...R6, С5, С6 выполнен тактовый генератор, вырабатывающий импульсы с частотой около 50 Гц. Он, в свою очередь, управляет работой транзисторов VT1, VT6, в коллекторные цепи которых включены обмотки IIa, IIб трансформатора Т1. Диоды VD2, VD3 - элементы защиты транзисторов VT1, VT6 в прямом режиме и выпрямители в обратном режиме. Элементы С1, С2, L1 образуют сетевой фильтр, VD1, СЗ, С4 - фильтр тактового генератора. Рассмотрим, как работает схема в обоих режимах.

Прямой режим (=12 В / -220 В). Напряжение +12 В попеременно прикладывается к обмоткам IIа или IIб, а трансформатор Т1 преобразует его в напряжение 220 В/50 Гц. Это напряжение присутствует на розетке XS1, и к ней подключаются всевозможные потребители (лампы накаливания, телевизор и др.)

Индикатором нормальной работы является свечение светодиодов VD4, VD5. Ток нагрузки может достигать 1 А (220 Вт).

Обратный режим (-220 В / =12 В). Для работы в обратном режиме необходимо сетевой шкур подключить к разъему ХР1 и подать на него -220 В. После этого переключается тумблер SB1. При этом сетевое напряжение попадает на первичную обмотку трансформатора Т1, а тактовый генератор отключается. Благодаря этому на вторичных обмотках Т1 получаются два переменных напряжения 10В, которые выпрямляются диодами VD2, VD3. Индикатором нормальной работы в обратном режиме является свечение светодиода VD5. Кипение в банках аккумулятора GB1 свидетельствует о процессе его зарядки.

Детали и конструкция, Т1 - любой трансформатор, обеспечивающий два напряжения 10В при Токе до 10 А. Лучше всего использовать сердечники типа ШЛ и ПЛ, которые легче разбираются. Катушка L1 выполнена на ферритовом кольце К28х16х9 М2000НМ и содержит две обмотки по 10 витков провода диаметром 0,5...0,71 мм.

Транзисторы VT1, VT6 и диоды VD2, VD3 крепятся через слюдяные прокладки, смазанные теплопроводящей пастой, на один общий радиатор площадью не менее 200 см2.

Источник бесперебойного питания (ИБП), или его как еще называют ЮПС (UPS – uninterruptible power supply) – это, по сути, зарядное устройство, аккумулятор и повышающий преобразователь в одном корпусе. Простой бесперебойник для компьютера мощностью от 300 Вт до 500 Вт стоит 2000 – 3500 руб. К сожалению, встроенный в них аккумулятор имеет обычно емкость от 7 до 8 А*час. Этого будет достаточно, чтобы питать компьютер в течение 4 минут. В более дорогих моделях устанавливается аккумуляторная батарея до 15 – 20 А, этой емкости может хватать на 10 – 30 минут бесперебойного питания компьютера.

Резервная схема построения ИБП (Off line , Standby )

Чаще всего ИБП, используемые для питания персональных компьютеров, построены по резервной схеме Off-Line. Практически все недорогие ИБП, мощностью от 300 Вт до 720 Вт, продаваемые на отечественном рынке, устроены по данной схеме.

Резервная схема построения ИБП (Off-line, Standby) осуществляется следующим образом:

  1. При стабильном напряжении в сети (в обычном режиме) питание подключенной нагрузки осуществляется от первичной электрической сети.
  2. При понижении напряжения в сети или его пропадании нагрузка подключается к питанию, через повышающий инверторный преобразователь, от встроенного аккумулятора.
  3. При восстановлении напряжения в сети, нагрузка снова переключается на питание от сети.

При каждом переключении питания возникает скачок напряжения, который недопустим для питания серверов и баз данных, но для персональных компьютеров это не критично.

Самостоятельно реализовать схему Off-line можно с помощью реле с катушкой на переменное напряжение 220В.

  1. При напряжении в сети на уровне 220В, нормально замкнутые контакты этого реле будут держать повышающий преобразователь отключенным.
  2. Когда в сети пропадет напряжение 220В, реле отпускает контакты и подключает аккумулятор вместе с преобразователем к питанию компьютера.
  3. При восстановлении напряжения 220В, реле опять включается, и переключает компьютер к питанию от сети.

Обязательно ещё нужно организовать схему зарядки аккумулятора самодельного бесперебойника.

Самодельное зарядное устройство для аккумулятора бесперебойника. Схема построения ИБП с двойным преобразованием (Online) Как самому установить люстру в доме

В статье рассмотрены виды ИБП, принципы работы ИБП, а также приведены реальные осциллограммы напряжений на выходе.

Для начала – немного общей терминологии. Источники бесперебойного питания (сокращенно – ИБП) у нас так же называют UPS, от английского сокращения Uninterruptable Power Supply (беспрерывный источник питания). Поэтому говорят и УПС (UPS) и ИБП, кому как удобнее. Я в статье буду называть и так, и эдак.

Зачем нужен UPS (ИБП)

Принцип работы ИБП раскрывается в названии – это такой источник, на выходе которого напряжение есть всегда . Но мы здесь собрались технари-реалисты, и понимаем, что ничего вечного нет, поэтому ниже разберемся в принципе действия.

ИБП в основном используются там, где пропадание электропитания может вызвать негативные последствия. Например, питание компьютеров и серверов, питание устройств связи и распределения сигналов (роутеры), питание устройств, автоматическая перезагрузка (перезапуск) которых без участия человека невозможна.

Как мой читатель доработал ИБП для стратегически важной системы (2 сервера, и т.д.). Кроме того, усовершенствовал схему, и добавил возможность использования обычного автомобильного аккумулятора.

Для бытовых вещей это прежде всего компьютеры и системы отопления.

Следует понимать, что ИБП выбираются на время работы нагрузки 10-15 мин, редко до получаса. Предполагается, что за это время питание появится, либо человек (оператор) предпримет необходимые действия (сохранит данные, позвонит в энергослужбу предприятия, завершит технологический процесс).

ИБП нельзя рассматривать в качестве резервного источника питания. Он является лишь аварийным источником, и в лучшем случае используется очень редко, в общей сложности не более 10 минут в год (несколько раз, на время не более минуты). Если это время больше, то следует задуматься о повышении качества электропитания.

Резервным источником питания можно считать такие источники, которые полностью могут заменить основное питание на длительное время, от нескольких часов до нескольких суток. Это может быть другая линия (см.статью про ), ветряной генератор. Теоретически, для этих целей может служить и ИБП, но для этого нужны аккумуляторы огромной ёмкости, что значительно повлияет на цену такой системы.

Виды источников бесперебойного питания

Виды (типы) ИБП имеют множество названий, но их всё равно ровно три. Разберёмся.

Итак, три основных вида ИБП:

Back UPS

Другие равнозначные названия – Off-line UPS, Standby UPS, ИБП резервного типа. Самые распространенные УПС, используются для большинства видов бытовой и компьютерной техники.

Back просто переключает нагрузку на питание от батарей при выходе входного напряжения за пределы. Нижний предел у разных моделей – около 180В, верхний – около 250В. Переходы на батарею и обратно – с гистерезисом. То есть, например, при понижении переход на батарею состоится при 180 В и менее, а обратно – при 185 и более. Тот же принцип действует у всех типов ИБП.

Чем-то напоминает , которое отключает нагрузку, а Back UPS не отключает, а переключает на аккумулятор, что позволяет ей некоторое время поработать.

Smart UPS

Другие названия – Line-Interactive, ИБП интерактивного типа. Недалеко ушли по принципу действия от Back.

Smart UPS действуют умнее, как следует из названия. Они ещё дополнительно переключают внутренний автотрансформатор, в некотором смысле стабилизируя входное напряжение. И только в крайнем случае переходят на батарею.

Таким образом, норма напряжения на выходе поддерживается при бОльших отклонениях на входе (150…300В). Автотрансформатор имеет несколько ступеней переключения, поэтому Умный УПС до последнего переключает выводы автотрансформатора, включая аккумулятор лишь в последний момент. Это позволяет экономить батарею, включая её в работу лишь при полном пропадании питания.

Данное устройство напоминает со ступенчатым переключением обмоток автотрансформатора. С той лишь разницей, что при выходе за рабочие пределы стабилизатор будет бессилен, а наша “умница” введёт в работу аккумулятор, и питание не пропадёт.

Online UPS

Другие названия – онлайн, источник бесперебойного питания с двойным преобразованием, инверторный. Совершенно другой принцип действия, для любителей чистого синуса. Энергия со входа преобразуется в постоянное напряжение, и поступает на инвертор, генерирующий чистый синус. И одновременно – поддерживает аккумулятор в 100% готовности. При необходимости инвертор продолжает работать так же, только питание на него поступает с аккумулятора.

Используется для аварийного питания техники, чувствительной к форме выходного напряжения – например, газовые котлы, сервера, профессиональная аудио-видео аппаратура и другое стратегически важное оборудование.

Минусов онлайн ИБП два – цена и КПД. КПД низкий, т.к. такой ИБП включен в работу постоянно, что следует из названия. В отличии от двух других типов.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Существуют разновидности онлайн УПС, в которых используется так называемый “сквозной ноль”, для правильной работы газовых электрокотлов. Это связано с тем, что такие котлы чувствительны к наличию реального нуля, для правильного розжига.

Исследование ИБП с помощью осциллографа

А теперь – самое интересное.

Напряжение на выходе Back UPS

Провёл исследование с использованием осциллографа Fluke 124. Осциллограммы (форма импульсов и колебаний на выходе ups) привожу и комментирую ниже.

Что видно по этой временной диаграмме? Период 20мс, частота 50Гц, амплитуда 315В. Стоит отметить, что фаза синуса и генерируемых импульсов совпадает, что хорошо. При пропадании сетевого напряжения ИБП мешкается 5-7 мс, и затем идут импульсы, которые называются “квази-синус”. Вот они:

Back UPS. Напряжение на выходе при питании от батарей.

Осциллограф померял RMS напряжение (среднеквадратическое), оно соответствует норме. Однако, когда я измерил это же напряжение мультиметром, я получил значение 155 В. Почему на выходе UPS низкое напряжение?

Дело в том, что мультиметр меряет только первую гармонику с частотой 50Гц. Для синуса всё гладко. Но если измерять напряжение таких вот импульсов, надо мерять именно RMS, среднеквадратическое, иначе не будут учтены следующие гармоники – 100, 150, 200 Гц. А они составляют значительную часть энергии, до 30%. Эту особенность знают производители UPS, и чтобы не заморачиваться (и не повышать цену на свои изделия), выдают на наши приборы такие импульсы с амплитудой около 370В.

Подробнее об измерении среднеквадратического несинусоидального напряжения – на видео:

Вот укрупненный график, где видно, что напряжение после переключения сначала повышается на пол секунды до 400В, а потом стабилизируется:

Back UPS. Выход, длительность 2 секунды

А вот как меняется форма напряжения на выходе Back-UPS в момент перехода с батарейного на сетевое питание:

Back UPS, – Напряжение на выходе ИБП при переходе с батареи на сеть. Форма импульсов на выходе ups

Тоже фаза не меняется, всё замечательно. Подключал на выход ИБП , переключал туда-сюда режимы питания – пускатель втянут надежно, никаких проблем.

В качестве испытуемого был ИБП APC Back-500-RS, параметры на фото ниже:

Параметры Back UPS – задняя панель

Напряжение на выходе Smart UPS

Теперь приведу для полноты картины осциллограммы напряжений на выходе Smart UPS. Испытаниям подвергался UPS Ippon Smart Power Pro 1000.

Smart UPS_Сеть-батарея

Время переключения также для всей современной аппаратуры несущественно – менее 7 мс.

Плавного изменения напряжения на входе я не делал, поскольку не было такой цели. Полагаю, что в данном случае Умный ИБП ведёт себя точно так же, как и релейный стабилизатор напряжения.

Данные исследования проведены в рамках проекта по промышленного холодильника.

Маломощный импульсный блок питания можно использовать в самых разных радиолюбительских конструкциях. Схема такого ИБП отличается особой простотой, поэтому может быть повторена даже начинающими радиолюбителями.

Основные параметры БП:
Входное напряжение - 110-260В 50Гц
Мощность - 15 Ватт
Выходное напряжение - 12В
Выходной ток - не более 0,7А
Рабочая частота 15-20кГц

Исходные компоненты схемы можно достать из подручного хлама. В мультивибраторе использовались транзисторы серии MJE13003, но при желании можно заменить на 13007/13009 или аналогичные. Такие транзисторы легко найти в импульсных блоках питания (в моем случае были сняты из компьютерного БП).

Конденсатор по питанию подбирается с напряжением 400 Вольт (в крайнем случае, на 250, чего очень не советую)
Стабилитрон использован отечественный типа Д816Г или импортный с мощностью порядка 1 ватт.

Диодный мост - КЦ402Б, можно использовать любые диоды с током 1 Ампер. Диоды нужно подобрать с обратным напряжением не менее 400 вольт. Из импортного интерьера можно ставить 1N4007 (полный отечественный аналог КД258Д) и другие.

Импульсный трансформатор - ферритовое кольцо 2000НМ, размеры в моем случае К20х10х8, но были использованы и также большие кольца, при этом намоточные данные не менял, работало нормально. Первичная обмотка (сетевая) состоит из 220 витков с отводом от середины, провод 0,25-0,45мм (больше нет смысла).

Вторичная обмотка в моем случае содержит 35 витков, что обеспечивает на выходе порядка 12 Вольт. Провод для вторичной обмотки подбирается с диаметром 0,5-1мм. Максимальная мощность преобразователя в моем случае не более 10-15 ватт, но мощность можно изменить подбором емкости конденсатора С3 (при этом, намоточные данные импульсного трансформатора уже меняются). Выходной ток такого преобразователя порядка 0,7А.
Сглаживающую емкость (С1) подобрать с напряжением 63-100Вольт.

На выходе трансформатора стоит использовать только импульсные диоды, поскольку частота достаточно повышена, обычные выпрямительные могут и не справится. FR107/207 пожалуй, самые доступные из импульсных диодов, часто встречаются в сетевых ИБП.

БП не имеет никаких защит от короткого замыкания, поэтому не следует замыкать вторичную обмотку трансформатора.

Перегрев транзисторов не замечал, с выходной нагрузкой 3 Ватт (светодиодная сборка) они ледяные, но на всякий случай можно установить на небольшие теплоотводы.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1, VT2 Биполярный транзистор

MJE13003

2 13007/13009 В блокнот
VDS1 Диодный мост

КЦ402А

1 Либо другой маломощный В блокнот
VDS2 Диодный мост 1 Любой до 2А В блокнот
VD1 Стабилитрон

Д816Г

1 В блокнот
С1 220 мкФ 440В 1 В блокнот
С2 Электролитический конденсатор 1000 мкФ х 16В 1 В блокнот
С3 Конденсатор 2.2 мкФ х 630В 1 Пленочный