Обзор схем восстановления заряда у батареек. Методы восстановления химических источников тока Схему для зарядки гальванических батареек

страница 4

Слаботочные зарядные устройства

Рис. 14.15 . Схема зарядного устройства для никель-кадмиевых аккумуляторов

На схеме указаны номиналы для заряда аккумуляторов ЦНК-0.45. Зарядное устройство позволяет заряжать также аккумуляторы типов Д-0.06, Д-0.125, Д-0.25, но для каждого из них необходимо установить в цепи базы транзистора резистор, обеспечивающий соответствующий начальный ток заряда.

В зарядном устройстве не предусмотрена система защиты от перегрузок. Питание устройства – от стабилизированного источника +5 В с максимальным током 2 А.

Следует заметить, что разряжать аккумуляторы ниже 1 6 не стоит, такие аккумуляторы теряют номинальную емкость, а бывает, и переполюсовываются.

Для контроля окончания зарядки можно использовать схему на рис. 14.16 .


Рис. 14.16 . Схема контроля окончания заряда

Основой ее служит компаратор DA1. На неинвертирующий вход поступает напряжение 1.35 Б с движка подстроенного резистора R1. Через контакты кнопки SB1 на инвертирующий вход подают напряжение с контролируемого аккумулятора. Если при фиксации кнопки SB1 в нажатом положении светодиод HL1 начинает светиться, то аккумулятор" зарядился до номинального напряжения 1.35 В. Далее контролируют напряжение на следующем аккумуляторе и т.д.

Автоматически отключающееся зарядное устройство на основе тиристорного ключа (рис. 14.17) состоит из выпрямителя и источника стабилизированного опорного напряжения. Источник опорного напряжения выполнен на стабилитроне VD6. Через резистивный делитель (потенциометр R2) стабилизированное напряжение подается на базу транзистора VT2. К эмиттеру этого транзистора подключен анодом диод VD7, соединенный своим катодом с заряжаемой батареей. Как только напряжение на батарее повысится сверх заданного уровня, транзисторы VT1 и VT2, а также и тиристор, через который протекает зарядный ток, отключатся, прервав процесс заряда.

Стоит обратить внимание, что тиристор питается импульсами выпрямленного напряжения от диодного моста VD1 – VD4. Конденсатор фильтра С1, транзисторная схема и стабилизатор напряжения подключены к выпрямителю через диод VD5. Лампа накаливания индицирует процесс заряда и, при необходимости, ограничивает ток короткого замыкания в аварийной ситуации.

В зарядных устройствах также может использоваться схема стабилизатора тока. На рис. 14.18 показана схема зарядного устройства на основе микросхемы LM117 с ограничением зарядного тока до 50 мА . Величину этого тока легко изменить с помощью резистора R1.


Рис. 14.17 . Схема зарядного устройства с автоматическим отключением


Рис. 14.18 . Схема зарядного устройства на основе стабилизатора тока

Рис. 14.19 . Схема зарядного устройства для заряда батареи напряжением 12В

Простое зарядное устройство для заряда батареи напряжением 12 В может быть выполнено на основе микросхемы типа LM117 (рис. 14.19). Выходное сопротивление устройства определяется величиной резистора Rs.

Схема другого зарядного устройства с ограничителем зарядного тока на уровне 600 мА (при сопротивлении резистора R3=1 Ом) для заряда 6 В батареи изображена на рис. 14.20.


Рис. 14.20 . Схема зарядного устройства с ограничением зарядного тока


Рис. 14.21 . Схема зарядного устройства для аккумуляторов ЦНК-0.45

В схеме зарядного устройства (рис. 14.21) для заряда аккумуляторов типа ЦНК-0.45 использован стабилизатор тока на микросхеме типа КР142ЕН5А . Ток заряда (50…55 мА) задано сопротивлением резистора R1: на этом сопротивлении падает вно 5 В, следовательно, ток, протекающий через последовательную цепочку из заряжаемого аккумулятора и генератора стабильного тока на основе микросхемы DA1 составляет (Б)/120 (Ом)=45+\с (мА ), где 1С=5…10 мА – ток собственного потребления микросхемы. Реально ток будет выше указанного значения еще на 3 мА, поскольку в расчетах не учтен ток через светодиодный индикатор HL1, индицирующий работу устройства.

Напряжение на конденсаторе фильтра С1 должно быть порядка 15…25 В.

При использовании стабилизаторов на большее выходное напряжение величину резистора R1 следует изменить (в сторону увеличения).

Устройство можно практически без переделок использовать на иные зарядные токи, вплоть до 1 А. Для этого потребуется подбор резистора R1 и, при необходимости, использование радиатора для микросхемы DA1.

Зарядное устройство (см. рис. 14.22) питают выпрямленным напряжением 12 В . Сопротивление токоограничительных резисторов рассчитывают по формуле: R=UCT/I , где UCT – выходное напряжение стабилизатора; I – зарядный ток. В рассматриваемом случае UCT=1.25 Б; соответственно, сопротивление резисторов таково: R1=1.25/0.025=50 О/и, R2=1.25/0.0125=100 Ом. В расчетах не учтен ток собственного потребления микросхемы (см. выше), который может составлять 5… 10 мА.


Рис. 14.22 . Схема зарядного устройства со стабилизацией тока

В устройстве можно применить микросхемы типов SD1083, SD1084, ND1083 или ND1084.

Схема зарубежного зарядного устройства "ВС-100" приведена на рис. 14.23. Устройство позволяет одновременно заряжать 3 пары Ni-Cd аккумуляторов. В процессе заряда светится светодиод HL1, затем светодиод HL1 начинает периодически вспыхивать. Постоянное свечение светодиодов HL1 и HL2 свидетельствует об окончании процесса заряда.

Зарядное устройство "ВС-100" не лишено недостатков. Заряд наиболее распространенных аккумуляторов емкостью 450 мА-ч током 160… 180 мА оказывается недопустимым. Ускоренный режим заряда выдерживают не все аккумуляторы, поэтому О. Долговым было разработано более совершенное зарядное устройство, схема которого приведена на следующем рисунке (рис. 14.24).

Сетевое напряжение, пониженное трансформатором Т1 до 10 В, выпрямляется диодами VD1 – VD4 и через токоограничивающий резистор R2 и составной транзистор VT2, VT3 поступает на заряжаемую батарею GB1. Светодиод HL1 индицирует наличие зарядного тока.


Рис. 14.23 . Схема зарядного устройства "ВС-100" для Ni-Cd аккумуляторов


Рис. 14.24 . Схема усовершенствованного зарядного устройства для Ni-Cd аккумуляторов

Значение начального тока заряда определяется напряжением вторичной обмотки трансформатора и сопротивлением резистора R2. Но напряжения на выходе устройства недостаточно для открывания стабилитрона VD5, поэтому транзистор VT1 закрыт, а составной транзистор открыт и находится в состоянии насыщения. При достижении напряжения на батарее аккумуляторов 2.7…2.8 В транзистор VT1 открывается, загорается светодиод HL2, и составной транзистор, закрываясь, уменьшает ток заряда.

Вторичная обмотка сетевого трансформатора должна быть рассчитана на напряжение 8…12 В и максимальный ток заряда с учетом всех одновременно заряжаемых аккумуляторов. Начальный ток заряда предлагаемого устройства – около 100 мА.

Налаживание устройства сводится к установке максимального тока заряда и выходного напряжения, при котором начинает светиться индикатор HL2. К выходу устройства через миллиамперметр подключают пару разряженных аккумуляторов и подбором резистора R2 устанавливают требуемый зарядный ток. Затем вывод эмиттера транзистора VT3 временно отключают от внешних цепей, подключают к выходу устройства пару полностью заряженных аккумуляторов (или другой источник напряжением 2.7…2.8 В) и подбором резисторов R5 и R6 добиваются свечения светодиода HL2. После этого восстанавливают разомкнутое соединение – и прибор готов к работе.

Для заряда никель-кадмиевых аккумуляторов В. Севастьянов использовал стабилизатор тока на основе интегральной микросхемы DA1 типа КР142ЕН1А (рис. 14.25) . Величину зарядного тока регулируют грубо и плавно при помощи резисторов R3 и R4.

Сама микросхема может обеспечить номинальный выходной ток до 50 мА и максимальный – до 150 мА. При необходимости увеличить этот ток следует подключить транзисторный усилитель на составном транзисторе. Транзистор необходимо установить на радиаторе. В том варианте, что показан на рис. 14.25, устройство обеспечивает выходной регулируемый стабильный ток в пределах 3.5…250 мА.

Заряжаемые элементы подключают к устройству через диоды VD1 – VD3.

Для заряда аккумуляторов Д-0.06 суммарный зарядный ток задают в пределах 16… 18 мА; заряд этим током производят 6 часов, затем зарядный ток снижают вдвое и продолжают заряд еще 6 часов.


Рис. 14.25 . Схема стабилизатора тока для заряда Ni-Cd аккумуляторов


Рис. 14.26 . Схема устройства для восстановления серебряно-цинковых элементов СЦ-21

Для подзаряда серебряно-цинковых элементов СЦ-21 В. Пицманом использована схема (рис. 14.26), в основе которой – задающий генератор на транзисторе и микросхеме К155ЛАЗ. К выводам 8 и 11 микросхемы DA1 подключены диодные цепочки, образованные из последовательно включенных кремниевых диодов КД102, встречно-параллельно которым подключен германиевый диод Д310.

Благодаря такому включению при попеременном появлении значений логического нуля и логической единицы на выходе микросхемы (т.е. подключении цепочки диодов к плюсовой или общей шине источника питания) происходит попеременная дозированная зарядка элементов GB1 и GB2 с последующим их разрядом. Величина зарядного тока превосходит ток разряда, что в итоге способствует восстановлению свойств элементов.

Зарядные устройства повышенной мощности

В случае, когда аккумулятор длительное время хранится без дела, он в результате естественного саморазряда и сульфата-ции пластин приходит в негодность.

Для того чтобы длительное хранение не приводило к порче аккумуляторной батареи, ее нужно постоянно поддерживать в заряженном состоянии . Заводы изготовители рекомендуют заряжать аккумуляторы током, равным 0.1 от номинальной емкости (т.е. для 6СТ-55 ток заряда будет 5.5 А), но это годится только для быстрого заряда "посаженной" батареи. Как показывает практика, для подзарядки аккумулятора в процессе длительного хранения требуется небольшой ток, около 0.1…0.3 А (для 6СТ-55). Если хранящийся аккумулятор периодически, примерно раз в месяц, ставить на такую подзарядку на 2…3 дня, то можно быть уверенным в том, что он в любой момент будет готов к эксплуатации даже через несколько лет такого хранения.

На рис. 16.6 показана схема "подзаряжающего" устройства – бестрансформаторного источника питания, выдающего постоянное напряжение 14,4 В при токе до 0.3 А . Источник построен по схеме параметрического стабилизатора с емкостным балластным сопротивлением. Напряжение от сети поступает на мостовой выпрямитель VD1 – VD4 через конденсатор С1. На выходе выпрямителя включен стабилитрон VD5 на 14,4 В. Конденсатор С1 ограничивает ток до величины не более 0.3 А. Конденсатор С2 сглаживает пульсации выпрямленного напряжения. Аккумуляторная батарея подключается параллельно стабилитрону VD5.


Рис. 16.6 . Схема устройства для подзарядки аккумуляторных батарей

При саморазряде батареи до напряжения ниже 14,4 В начинается ее "мягкий" заряд малым током. Величина этого тока находится в обратной зависимости от напряжения на аккумуляторе, но в любом случае даже при коротком замыкании не превышает 0.3 А. При заряде батареи до напряжения 14,4 В процесс прекращается.

При эксплуатации устройства нужно соблюдать правила безопасности при работе с электроустановками.

Простое зарядное устройство для заряда автомобильных или тракторных аккумуляторов (рис. 16.7) выгодно отличается повышенной безопасностью в эксплуатации по сравнению с бестрансформаторными аналогами. Однако его трансформатор довольно сложен: для регулировки зарядного тока он имеет множество отводов.

Регулировка тока заряда производится галетным переключателем S1 за счет изменения числа витков первичной обмотки. Выпрямитель обеспечивает ток заряда 10… 15 А.

Портативное устройство, предназначенное для зарядки литиевых (ионно-литиевых) батарей пульсирующим током, показано на рис. 16.9 . Автоматизированное зарядное устройство выполнено на основе специализированной микросхемы фирмы MAXIM – MAX1679. Питание зарядное устройство получает от сетевого адаптера, способного выдавать напряжение 6 В при токе до 800 мА. Для защиты схемы от неправильного подключения предназначен диод VD1 – диод Шотки, – рассчитанный на прямой ток 1 А при максимальном обратном напряжении 30 В. Светодиод HL1 предназначен для индикации работы зарядного устройства.


Рис. 16.8 . Схема устройства для заряда 12-вольтовых аккумуляторных батарей током от 1 до 15 А


Рис. 16.9 . Схема зарядного устройства для ионно-литиевых батарей на основе микросхемы МАХ1679


Рис. 16.10 . Схема повышающего преобразователя для заряда 13.8 В аккумуляторной батареи УКВ-радиостанции от бортовой сети автомобиля

Для повышения стабильности работы устройства при изменении температуры окружающей среды в пределах от 0 до 50 °C использован термистор R2 типа NTC FENWAL 140-103LAG-RBI , имеющий сопротивление 10 кОм при температуре 25 °C.

Напряжение ионно-литиевого элемента составляет 2.5 В на элемент.

Простое зарядное устройство , предназначенное для подзарядки аккумулятора напряжением 13.8 Б от бортовой сети автомобиля (около 12 В), выполнено на основе повышающего преобразователя напряжения на основе микросхемы LT1170CT)ис. 16.10). Микросхема вырабатывает импульсы частотой 00 кГц. Эти импульсы поступают на внутренний ключевой каскад микросхемы (его выход – вывод 4). Цепочка из резистивного деятеля R2, R3 предназначена для отслеживания колебаний вы-)дного напряжения и организации следящей обратной связи по напряжению (вывод 2 микросхемы). Выходное напряжение регулируют подбором именно этих резисторов. Выпрямитель преобразователя выполнен на диоде VD2 – диоде Шотки типа MBR760 прямой ток до 5/4).

Зарядный ток аккумулятора – до 2 А, КПД преобразователя достигает 90%.

Восстановление пассивированных аккумуляторных батарей

В результате неправильной эксплуатации аккумуляторных батарей их пластины пассивируются и выходят из строя. Тем не менее, известен способ восстановления таких батарей ассиметричным током (при соотношении зарядной и разрядной составляющих этого тока 10:1 и соотношении импульсов этих составляющих 1:2). Этот способ позволяет активизировать поверхности пластин старых аккумуляторов и производить профилактику исправных [ 2 ].

Рис. 1. Зарядка аккумуляторной батареи ассиметричным током. Схема принципиальная электрическая

На Рис. 1 представлена схема заряда аккумулятора ассиметричным током рассчитанная на работу с 12 В аккумуляторной батареей и обеспечивает импульсный зарядный ток 5 А и разрядный – 0,5 А. Она представляет собой регулятор тока, собранный на транзисторах VT1…VT3. Питается устройство переменным током напряжением 22 В (амплитудное значение 30 В). При номинальном зарядном токе напряжение на заряженной аккумуляторной батарее составляет 13…15 В (среднее напряжение 14 В).

За время одного периода переменного напряжения формируется один импульс зарядного тока (угол отсечки а = 60ْ). В промежутке между зарядными импульсами формируется разрядный импульс через резистор R3, сопротивление которого подбирается по необходимой амплитуде разрядного тока. Необходимо учитывать, что суммарный ток зарядного устройства должен составлять 1,1 от тока заряда аккумулятора, так как при заряде резистор R3 подключен параллельно батарее и через него течёт ток. При использовании аналогового амперметра, он будет показывать около одной трети от амплитуды импульса зарядного тока. Схема защищена от короткого замыкания выхода.

Заряд аккумулятора ведут до тех пор, пока наступит обильное газовыделение (кипение) во всех банках, а напряжение и плотность электролита будут постоянными в течение двух часов подряд. Это является признаком окончания заряда. Затем следует произвести уравнивание плотности электролита во всех банках и продолжить заряд в течение примерно 30 минут для лучшего перемешивания электролита.

Во время заряда аккумуляторной батареи следует следить за температурой электролита и не допускать её превышения: 45ْ С в умеренных и холодных зонах и 50ْ С в тёплых и жарких влажных зонах климата.

Так как при заряде кислотных аккумуляторов выделяется водород, следует проводить заряд аккумуляторов в хорошо проветриваемых помещениях, при этом не следует курить и пользоваться источниками открытого огня. Образовавшаяся гремучая смесь обладает большой разрушительной силой.

(Выделяющийся при кипении электролита газ переносит капельки кислоты, которые, попадая в органы дыхания, на слизистую оболочку глаз, кожу, разъедают их, так что зарядку аккумуляторных батарей лучше производить на открытом воздухе вне помещения – UA 9 LAQ ).

Литература: 1. Батарейки и Аккумуляторы. Серия “Информационное издание”.

Выпуск 1. “Наука и Техника”, Киев, 1995 г, стр. 30…31.

2. Деордиев С. С. Аккумуляторы и уход за ними. Техника, Киев, 1985 г

P . S . Тема актуальна для всех, кто пользуется автономным питанием повышенной мощности, для передвижных (мобильных) радиостанций, участников радиоэкспедиций и “Полевых дней”. Транзисторы VT2 и VT3 лучше установить на теплоотводы с достаточной площадью поверхности. Мощные низкоомные резисторы лучше изготовить из медной проволоки, намотав её на каркас из негорючего тугоплавкого материала. Возможен вариант изготовления таких резисторов из провода высокого сопротивления или применение мощных низковольтных ламп накаливания. Поскольку у последних сопротивление - величина переменная, то они, с одной стороны, могут являться причиной нестабильности порога срабатывания защиты, с другой, при последовательном включении, будут являться (дополнительными) стабилизаторами тока (здесь: тока зарядки).

Для герметизированных аккумуляторов с гелевым электролитом, наряду с циклическим щадящим режимом зарядки током постоянного значения, используют режим плавающего тока зарядки при постоянном напряжении, при этом, необходимо устанавливать напряжение 2,23…2,3 В в расчёте на элемент батареи, что в пересчёте, например, на 12-вольтовую аккумуляторную батарею составит: 13,38…13,8 В. При изменении температуры от минус 30ْ С до плюс 50ْ С напряжение заряда может изменяться от 2,15 до 2,55 В на элемент. При температуре 20ْ С при использовании аккумуляторной батареи в буферном режиме, напряжение на ней должно находиться в пределах 2,3…2,35 В на элемент. Колебание напряжения (например, при изменении нагрузки на комбинированный источник питания с “буферной” батареей) не должно превышать плюс/минус 30 мВ на элемент. При зарядном напряжении более 2, 4 В на элемент следует применять меры для ограничения тока заряда до максимум 0,5 А на каждый ампер – час ёмкости.

При использовании батареи в буфере со стабилизатором напряжения, напряжение на выходе последнего следует выбирать таким образом, чтобы оно не превышало напряжения свежезаряженной батареи, например, 14,2 В для 12 – вольтовой с учётом падения напряжения на разделительном (между стабилизатором и батареей) диоде, который следует выбирать с запасом на максимальный ток нагрузки и зарядный ток аккумуляторной батареи (если не исключена возможность подключения разряженной батареи).

Диод должен иметь максимально возможное обратное и минимально возможное прямое сопротивления для обеспечения, соответственно, минимальной разрядки батареи через отключенный от сети стабилизатор и минимального падения напряжения зарядки при смене нагрузки как указано выше. Хорошо здесь подходят мощные диоды с барьером Шоттки.

Изложенные выше принципы, в большинстве своём, приемлемы и для миниатюрных некислотных аккумуляторов, но там другие напряжения и токи.

Несколько слов о регенерации гальванических элементов.

Рис. 2. Зарядка гальванических элементов ассиметричным током. Схема принципиальная электрическая.

В [ 1 ] приведена простая схема зарядки гальванических элементов ассиметричным током, когда ко вторичной обмотке понижающего трансформатора подключаются два диода по схеме однополупериодного выпрямления положительного и отрицательного напряжения. Последовательно с одним диодом включен двухваттный резистор сопротивлением 13 Ом (для прямого тока зарядки), последовательно с другим, включенным в противоположной полярности, – такой же резистор, но сопротивлением 100 Ом, для обеспечения разрядного тока. Обе цепи подключены к гальваническому элементу или батарее из них. (Рис. 2). Величиной напряжения, подаваемого на вход выпрямителей или величиной номиналов резисторов в имеющейся пропорции можно синхронно изменять ток заряда и разряда гальванических источников тока. Соотношение зарядного тока к разрядному здесь 10:1, отношение длительности импульсов 1:2. Как указано в [ 1 ] устройство позволяет активизировать батарейки от часов и старые малогабаритные аккумуляторы. Причём заряд первых должен осуществляться током не более 2 мА и длиться не более 5 часов.

Я, в своё время, применял “плавающий” способ зарядки гальванических элементов, который позволил мне эксплуатировать пару лет три 9 – вольтовых комплекта элементов 316 “Прима” и, в общей сложности 4 года, когда из трёх комплектов “дожили” элементы сведённые в один. Элементы были взяты новыми: буквально через две недели после выпуска оказались у меня, был проведён предварительный отбор на идентичность и продуман порядок эксплуатации. Выбранный мной режим зарядки обеспечивал зарядный ток в течении 12…15 часов от стабилизированного блока питания с выходным напряжением 9,6 В, т.е., 1,51 В на элемент (можно до 1,52…1,53 В). Такой режим не даёт элементам нагреваться при зарядке, а это значит, что элементы долго не высыхают. Эксплуатация батареи производилась в СВ-радиостанции с выходной мощностью до 1 Вт (ВИС-Р). Элементы в разряженном состоянии не хранились, эксплуатация проводилась в буфере (стабилизатор плюс батарея) в стационарных условиях и в походных, после возвращения из которых, батарея (внутри станции) снова возвращалась на место: к стабилизатору.

Те, кто на даче не имеют электричества, наверняка испытывают определенные неудобства в самых элементарных вещах. Ну ладно там, нет холодильника или телевизора… Но ведь порой даже мобильный телефон подзарядить нет возможности. Запасных аккумуляторов — не напасешься и не навозишься.

Между тем, существует довольно простой способ получить электрический ток достаточный для работы простейших электронных устройств прямо на месте и без больших затрат. Да, лампочку к такому источнику не подключить, но обеспечить электропитанием небольшой радиоприемник или подзарядить мобильник ему вполне по силам. Такой же источник сможет зарядить небольшие аккумуляторы и в походе, пока туристы спят или отдыхают. И что особенно ценно, данный источник стоит буквально копейки, работает независимо ни от каких погодных условий и не имеет вообще никаких подвижных частей.

Принцип работы данного источника тока основан на том, что некоторые металлы образуют между собой т.н. гальванические пары. Т.е. при их соприкосновении образуется простейший гальванический элемент, вырабатывающий электрический ток. Например, по этой причине нельзя соединять напрямую провода из меди и алюминия. В месте их контакта немедленно начинает образовываться закись меди, приводящая к нарушению контакта.

Если два электрода из таких металлов поместить в электролит, они начнут вырабатывать электрический ток. Почему же не использовать этот эффект для того, что бы решить хотя бы одну проблему — с той же зарядкой мобильного телефона в условиях отсутствия электросети.

При устройстве такого простейшего элемента можно использовать в качестве электродов любые медные и железные отрезки проволоки, а лучше — пластины. Пластины дадут бОльший ток. А качестве электролита подойдет сырая земля (грунт), которую лучше пропитать солевым раствором.

Что бы не портить землю на своем участке, лучше насыпать землю в ведра (можно и дырявые) или даже в полиэтиленовые пакеты.

В пакет насыпается земля, обильно поливается соляным раствором и в нее втыкаются два электрода. Если к этим электродам подключить вольтметр, вы увидите, что он показывает наличие напряжения.

Разумеется, напряжение такого элемента невелико — 0,5-1 вольт максимум. А ток, который он вырабатывает 20-50 мА. Но что нам мешает сделать несколько таких элементов и соединить их последовательно! Таким образом мы достигнем необходимого напряжения, достаточного для зарядки аккумулятора мобильного телефона или другого устройства.

Разумеется, такой элемент примитивен, имеет невысокий КПД. Но! Во-первых, он крайне дешев и делается действительно из материалов, которые валяются под ногами — (проволока, обрезки труб, пластины металла). Во-вторых, он не требует никаких телодвижений с вашей стороны после его изготовления. Он необслуживаемый! Один раз сделал — пользуйся весь сезон. Ну разве что поливай периодически, поддерживая влажности грунта. В третьих — сделать его по силам даже школьнику младших классов.

В четвертых — он очень мобилен. Что немаловажно для туристов, например. Разбили стоянку, воткнули электроды в землю, вылили ведро воды и извольте заряжаться. За ночь аккумуляторы фонариков, мобильных телефонов, раций, фотоаппаратов и навигаторов получат необходимую подпитку.

Такими элементами пользовались еще на заре электроники, когда батареи были очень дефицитны и дороги. Теперь же с появлением весьма экономичных и низковольтных электронных приборов массового пользования они возможно кому то снова смогут принести пользу.

Как зарядить аккумуляторы для электронных устройств в походных условиях?

К сожалению, практически все устройства, называемые мобильными, на самом деле сильно зависят от розетки. Особенно это актуально при многодневных туристических походах, когда уже через пару-тройку дней полезные гаджеты (телефоны, рации, навигаторы, плееры и пр.) постепенно превращаются в нерабочий бесполезный хлам.

Хорошо если туристы позаботились о специальном снаряжении: дополнительные аккумуляторы, походные солнечные батареи, генераторы и т.п. А если нет? Между тем, существует довольно простой способ получить электрический ток достаточный для работы простейших электронных устройств прямо на месте и без больших затрат.

Принцип работы данного источника тока основан на том, что некоторые металлы образуют между собой т.н. гальванические пары. Если два электрода из таких металлов поместить в электролит, они начнут вырабатывать электрический ток.

При устройстве такого простейшего элемента можно использовать в качестве электродов любые медные (латунные, свинцовые) и железные (цинковые, алюминиевые) отрезки проволоки, а лучше — пластины. Больше площадь взаимодействия — больше ток. А в качестве электролита подойдет сырая земля (грунт), которую лучше пропитать солевым раствором. Грубо говоря, ток может вырабатывать и лопата, воткнутая в грядку, но лучше систему электродов поместить в отдельную герметичную емкость, куда и насыпается грунт.

Разумеется, напряжение такого элемента невелико — 0,5-1 вольт. А ток, который он вырабатывает 20-50 мА. Но что нам мешает сделать несколько таких элементов и соединить их последовательно! Таким образом, мы достигнем необходимого напряжения, достаточного для зарядки аккумулятора мобильного телефона или другого устройства.

Кроме того, для достижения требуемого напряжения можно поэкспериментировать с размером (площадью поверхности) электродов, материалом (металлом) из которого они сделаны, концентрацией соляного раствора и заменой поваренной соли на, скажем, медный купорос и т.д.

Разумеется, такой элемент имеет невысокий КПД. Но! Во-первых, он крайне дешев и делается из материалов, которые валяются под ногами — (проволока, обрезки труб, пластины металла). Во-вторых, он не требует обслуживания после его изготовления. Один раз сделал и пользуйся весь сезон. Ну, разве что необходимо поддерживать влажность грунта. В третьих – он очень прост в изготовлении и может быть воспроизведен за несколько минут на каждой новой стоянке, что немаловажно для туристов. Разбили стоянку, воткнули электроды в землю, полили соленой водой и извольте заряжаться. За ночь аккумуляторы фонариков, мобильных телефонов, раций, фотоаппаратов и навигаторов получат необходимую подпитку.

Такими элементами пользовались еще на заре электроники, когда батареи были очень дефицитны и дороги. Теперь же с появлением весьма экономичных и низковольтных электронных приборов массового пользования они возможно кому то снова смогут принести пользу.

Этой статьёй мы открываем новое для нашего сайта направление: тестирование аккумуляторов и гальванических элементов (или, выражаясь простым языком, батареек).

Несмотря на то, что всё большую популярность приобретают литий-ионные аккумуляторы, специфичные для каждой конкретной модели устройства, рынок стандартных элементов питания общего назначения до сих пор очень велик – от них питается масса различных изделий, начиная от детских игрушек и заканчивая недорогими фотоаппаратами и профессиональными фотовспышками. Велик и ассортимент этих элементов – батарейки и аккумуляторы разных типов, емкостей, размеров, торговых марок, качества изготовления...

На первых порах мы не ставим перед собой цель объять всё богатство элементов питания – мы ограничимся лишь наиболее стандартными и распространёнными из них: цилиндрическими батарейками и никелевыми аккумуляторами.

Данная же статья призвана познакомить вас с некоторыми базовыми понятиями, касающимися исследуемых нами элементов питания, а также с методикой тестирования и используемым нами оборудованием. Впрочем, многие теоретические и практические вопросы мы будем обсуждать и в последующих статьях, посвящённых уже конкретным элементам питания – тем более, что делать это на "живых примерах" много удобнее и нагляднее.

Типы аккумуляторов и гальванических элементов

Батарейки с солевым электролитом

Батарейки с солевым электролитом, они же цинк-углеродные (впрочем, в отличие от щелочных батареек, на упаковках солевых производители обычно просто не указывают их химию) – самые дешёвые химические источники тока из имеющихся в продаже: стоимость одной батарейки колеблется от четырёх-пяти до восьми-десяти рублей, в зависимости от марки.


Представляет собой такая батарейка цинковый цилиндрический контейнер (служащий одновременно и корпусом, и "минусом" батарейки), в центре которого находится угольный электрод ("плюс"). Вокруг анода размещён слой диоксида марганца, а оставшееся пространство между ним и стенками контейнера заполнено пастой из хлорида аммония и хлорида цинка, разведённых в воде. Состав этой пасты может варьироваться: в маломощных батарейках в ней доминирует хлорид аммония, а в более ёмких (обычно обозначаемых производителями как "Heavy Duty") – хлорид цинка.

При работе батарейки цинк, из которого сделан её корпус, постепенно окисляется, в результате чего в нём могут появиться прорехи – тогда электролит из батарейки вытечет, что может привести к порче устройства, в которое она установлена. Впрочем, такие проблемы были характерны в основном для отечественных батареек времён существования СССР, современные же надёжно упаковываются в дополнительную внешнюю оболочку и "текут" очень редко. Тем не менее, надолго оставлять в устройстве севшие батарейки не стоит.

Как уже упоминалось выше, химический состав электролита солевых батареек может немного варьироваться – в "мощной" версии используется электролит с преобладанием хлорида цинка. Впрочем, слово "мощный" применительно к ним можно писать разве что в кавычках – ни одна из разновидностей солевых батареек на сколь-нибудь серьёзную нагрузку не рассчитана: в фонаре их хватит на четверть часа, а в фотоаппарате может не хватить даже на выдвижение объектива. Удел солевых батареек – пульты дистанционного управления, часы да электронные термометры, то есть устройства, энергопотребление которых укладывается в единицы, в крайнем случае в десятки миллиампер.

Батарейки с щелочным электролитом

Следующий тип батареек – щелочные, или марганцевые батарейки. Некоторые не слишком грамотные продавцы и даже производители называют их "алкалиновыми" – это слегка искажённая калька с английского "alkaline", то есть "щёлочь".


Цены на щелочные батарейки варьируются от десяти до сорока-пятидесяти рублей (впрочем, большинство их типов укладываются в диапазон до 25 рублей, выделяются только отдельные модели повышенной мощности), а отличить от солевых их можно по обычно присутствующей в том или ином виде надписи "Alkaline" на упаковке (а иногда – и прямо в названии, например, "GP Super Alkaline" или "TDK Power Alkaline").

Отрицательный полюс щелочной батарейки состоит из цинкового порошка – по сравнению с цинковым корпусом солевых элементов, использование порошка позволяет увеличить скорость протекания химических реакций, а значит, и отдаваемый батарейкой ток. Положительный полюс – из диоксида марганца. Основным же отличием от солевых батареек является тип электролита: в щелочных в его качестве используется гидроксид калия.

Щелочные батарейки хорошо подходят для устройств с энергопотреблением от десятков до нескольких сотен миллиампер – при ёмкости порядка 2...3 А*ч они обеспечивают вполне разумное время работы. К сожалению, есть у них и существенный минус: большое внутреннее сопротивление. Если нагрузить батарейку действительно большим током, её напряжение сильно просядет, а значительная часть энергии будет расходоваться на нагрев самой батарейки – в результате эффективная ёмкость щелочных батареек сильно зависит от нагрузки. Скажем, если при разряде током 0,025 А нам удастся получить от батарейки 3 А*ч, то при токе 0,25 А реальная ёмкость упадёт уже до 2 А*ч, а при токе 1 А – и вовсе ниже 1 А*ч.

Тем не менее, какое-то время щелочная батарейка может работать и при большой нагрузке, просто это время сравнительно невелико. Скажем, если на солевых батарейках современный цифровой фотоаппарат может даже не включиться, то одного комплекта щелочных ему хватит на полчаса работы.

Кстати, если уж вы вынуждены использовать в фотоаппарате щелочные батарейки – купите сразу два комплекта и периодически меняйте их местами, это позволит немного продлить их жизнь: если разряженной большим током батарейке дать немного "отлежаться", она частично восстановит заряд и сможет проработать ещё немного. Минут пять.

Литиевые батарейки

Последний из широко распространённых типов батареек – литиевые. Как правило, они рассчитаны на напряжение, кратное 3 В, поэтому большинство типов литиевых батареек с полуторавольтовыми солевыми и щелочными не взаимозаменяемы. Такие батарейки широко используются в часах, а также – реже – в фототехнике.


Впрочем, существуют и литиевые батарейки на напряжение 1,5 В, выполненные в стандартных форм-факторах АА и ААА – их можно использовать в любой технике, рассчитанной на обычные солевые или щелочные батарейки. Основное преимущество литиевых батареек заключается в меньшем внутреннем сопротивлении по сравнению со щелочными: их ёмкость мало зависит от тока нагрузки. Поэтому, хотя при малом токе что щелочная, что литиевая батарейки имеют одинаковую ёмкость 3 А*ч, если поставить их в цифровой фотоаппарат, потребляющий 1 А, то щелочные "умрут" минут через тридцать, а вот литиевые проживут почти три часа.

Минусом литиевых батареек является высокая стоимость: мало того, что дорог сам литий, так ещё и в связи с опасностью его воспламенения при попадании воды конструкция батарейки оказывается заметно сложнее по сравнению с щелочными. В результате одна литиевая батарейка стоит 100-150 рублей, то есть в три-пять раз дороже очень хорошей щелочной. Примерно столько же стоит Ni-MH аккумулятор, обладающий сходными с литиевыми батарейками разрядными характеристиками, но способный пережить несколько сотен циклов заряд-разряд – поэтому покупка литиевых батареек оправдана лишь в том случае, когда вам негде, некогда или нечем зарядить обычные аккумуляторы.

Да, раз уж зашла речь о циклах заряда, необходимо сказать, что пытаться заряжать литиевые батарейки категорически нельзя! Если обычная щелочная или солевая батарейка при попытке её зарядить может, как максимум, просто вытечь, то герметичные литиевые батарейки при заряде взрываются.

Также, помимо хороших разрядных характеристик, у литиевых батареек есть ещё два преимущества, как правило, не очень существенных: долговечность (допустимый срок хранения достигает 15 лет, при этом батарейка потеряет всего 10 % ёмкости) и способность работать при отрицательных температурах, когда у солевых и щелочных батареек попросту замерзает электролит.

Никель-кадмиевые (Ni-Cd) аккумуляторы

Основной же альтернативой батарейкам являются аккумуляторы – источники тока, химические процессы в которых обратимы: при подключении аккумулятора к нагрузке они идут в одном направлении, а при приложении к нему напряжения – в обратном. Таким образом, если батарейку после использования приходится выбрасывать и приобретать новую, то аккумулятор можно зарядить до его полной (или почти полной) исходной ёмкости.

Рассматривать мы будем аккумуляторы, используемые в лёгкой бытовой электронной аппаратуре – поэтому тяжёлые (и в прямом, и в переносном смысле) свинцово-кислотные аккумуляторы, встречающиеся в автомобилях, блоках бесперебойного питания и других устройствах с большим энергопотреблением и без особых ограничений на вес и габариты, сразу остаются за бортом нашей сегодняшней статьи. А вот различным типам никелевых аккумуляторов внимания мы уделим много больше...

Первые никелевые – точнее говоря, никель-кадмиевые – аккумуляторы были созданы шведским учёным Вальдемаром Юнгером (Waldmar Jungner) аж в 1899 году, однако на тот момент были относительно дороги, да к тому же не являлись герметичными: при зарядке аккумулятор выделял газ. Лишь в середине прошлого века удалось создать никель-кадмиевую батарею с замкнутым циклом: выделяющиеся при зарядке газы поглощались самим же аккумулятором.

Никель-кадмиевые аккумуляторы надёжны и долговечны (их можно хранить до пяти лет, а заряжать – при правильном использовании – до 1000 раз), хорошо работают при низких температурах и легко выдерживают большие токи разряда, могут заряжаться как малыми, так и большими токами.

Минусов у них, впрочем, тоже немало. Во-первых, относительно маленькая плотность энергии (то есть отношение ёмкости элемента к его объёму), во-вторых, заметный ток саморазряда (после нескольких месяцев хранения аккумулятор перед использованием потребуется заново зарядить), в-третьих, использование в конструкции ядовитого кадмия, и, в-четвёртых, эффект памяти.

На последнем стоит остановиться подробнее, так как при разговоре об аккумуляторах мы его ещё не раз вспомним. Эффект памяти является следствием нарушения внутренней структуры аккумулятора: в нём начинают расти кристаллы, уменьшающие эффективную поверхность и, соответственно, ёмкость аккумулятора. Своё название эффект получил из-за того, что особенно быстро кристаллы растут при неполной разрядке аккумулятора: он как бы помнит, до какого уровня его разряжали в прошлый раз – если аккумулятор был разряжен, скажем, только на 25 %, то очередная зарядка восстановит его ёмкость не до 100 %, а меньше. Для борьбы с эффектом памяти аккумулятор рекомендуется перед зарядкой разряжать полностью – это разрушает образующиеся кристаллы и восстанавливает ёмкость аккумулятора. Среди доступных типов аккумуляторов именно никель-кадмиевые наиболее подвержены эффекту памяти.

Тем не менее, в некоторых случаях использование никель-кадмиевых аккумуляторов оправдано и сейчас – благодаря низкой стоимости, долговечности и возможности зарядки при низких температурах без отрицательных последствий для аккумулятора.

Никель-металлгидридные (Ni-MH) аккумуляторы

Несмотря на близкое соседство на полках магазинах, в историческом плане между Ni-Cd и Ni-MH аккумуляторами лежит пропасть: последние были разработаны лишь в 1980-х годах. Интересно, что изначально исследовалась возможность хранения водорода для никель-водородных батарей, применяемых в космической технике, но в результате мы получили и один из самых распространённых в быту типов аккумуляторов.

В отличие от никель-кадмиевых батарей, никель-металлгидридные не содержат тяжёлых металлов, а значит, безвредны для окружающей среды и не требуют специальной переработки при утилизации. Впрочем, это далеко не единственный их плюс: с точки зрения потребителей, то есть нас с вами, куда важнее, что при тех же размерах Ni-MH аккумуляторы имеют в два-три раза большую ёмкость – для наиболее распространённых аккумуляторов формата AA она доходит уже до 2500-2700 мА*ч против 800-1000 мА*ч у никель-кадмиевых.

Более того, Ni-MH аккумуляторы ещё и практически не страдают от эффекта памяти. Точнее говоря, производители год за годом уменьшают его влияние – и поэтому, хотя теоретически эффект присутствуют и в Ni-MH аккумуляторах, на практике у современных моделей он незначителен. Впрочем, мы не будем полагаться во всём на производителей и в одной из наших следующих статей попробуем сами оценить влияние эффекта памяти.

К сожалению, у Ni-MH аккумуляторов есть и свои проблемы. Во-первых, они имеют больший ток саморазряда (впрочем, об этом мы ещё раз поговорим чуть ниже) по сравнению с Ni-Cd, во-вторых, хотя число циклов перезарядки также может достигать 1000, падение ёмкости аккумулятора может наблюдаться уже после 200-300 циклов, в-третьих, слишком большие разрядные токи и зарядка при низких температурах заметно сокращают жизнь аккумулятора.

Тем не менее, по совокупности характеристик – стоимости, надёжности, ёмкости, простоте обслуживания – на данный момент Ni-MH аккумуляторы являются одними из лучших, что и обусловило их применение в огромной массе бытовых устройств.

В последнее время в продаже появились также так называемые "Ready To Use" ("готовы к использованию") Ni-MH аккумуляторы. От обычных они отличаются малым током саморазряда – производитель уверяет, что за полгода аккумулятор потеряет не более 10 % ёмкости, а за год – не более 15 % (для сравнения, обычный Ni-MH аккумулятор за месяц сядет на 20...30 %, а за год – в ноль). Отсюда и название: будучи заряженными ещё производителем, эти аккумуляторы не успеют полностью разрядиться до того, как вы купите их в магазине, а значит, их можно будет использовать без предварительной зарядки, сразу после покупки. Минусом таких аккумуляторов является меньшая ёмкость – элемент формата AA имеет ёмкость 2000...2100 мА*ч против 2600...2700 мА*ч для обычных Ni-MH аккумуляторов.

Зарядные устройства для Ni-Cd и Ni-MH аккумуляторов

Принципы заряда Ni-Cd и Ni-MH аккумуляторов во многом схожи – по этой причине современные зарядные устройства, как правило, поддерживают сразу оба типа. Методы же заряда и, соответственно, типы зарядных устройств можно разделить на четыре группы. При этом во всех случаях мы будем указывать зарядный ток через ёмкость аккумулятора: например, рекомендация заряжать током величиной "0,1С" означает, что аккумулятору ёмкостью 2700 мА*ч в такой схеме соответствует ток 270 мА (0,1*2700 = 270), а аккумулятору ёмкостью 1400 мА*ч – 140 мА.

Медленный заряд током 0,1C

Этот метод основан на том, что современные аккумуляторы легко выдерживают перезаряд (то есть попытку "залить" в них больше энергии, чем аккумулятор может хранить), если зарядный ток не превышает величины 0,1C. Если ток превышает эту величину, аккумулятор при перезаряде может выйти из строя.

Соответственно, слаботочное зарядное устройство не нуждается в каком-либо контроле окончания заряда: ничего страшного в избыточной его продолжительности нет, аккумулятор просто рассеет лишнюю энергию в виде тепла. Соответствующие зарядные устройства дёшевы и весьма широко распространены. Для зарядки аккумулятора достаточно оставить его в таком ЗУ на время не менее 1,6*C/I, где C – ёмкость аккумулятора, I – зарядный ток. Скажем, если мы берём ЗУ с током 200 мА, то аккумулятор ёмкостью 2700 мА*ч гарантированно зарядится за 1,6*2700/200 = 21 час 36 минут. Почти сутки... в общем, главный недостаток таких ЗУ очевиден – время зарядки зачастую превышает разумные величины.

Тем не менее, если вы никуда не торопитесь, такое зарядное устройство вполне имеет право на жизнь. Главное – если вы используете аккумуляторы малой ёмкости в паре с современным ЗУ, проверьте, чтобы ток зарядки (а он обязательно должен быть указан в характеристиках ЗУ) не превышал 0,1C. Также стоит учесть, что медленный заряд способствует проявлению у аккумуляторов эффекта памяти.

Заряд током 0,2...0,5С без контроля окончания заряда

Подобные зарядные устройства хоть и редко, но всё же встречаются – в основном среди дешёвой китайской продукции. При токе 0,2...0,5С они либо не имеют контроля окончания заряда вообще, либо имеют только встроенный таймер, выключающий аккумуляторы через заданное время.

Использовать подобные ЗУ категорически не рекомендуется : так как контроля окончания заряда нет, то в большинстве случаев аккумулятор окажется недо- или перезаряжен, что существенно сократит срок его жизни. Сэкономив на зарядном устройстве, вы потеряете деньги на аккумуляторах.

Заряд током до 1C с контролем окончания заряда

Этот класс зарядных устройств – наиболее универсален для повседневного применения: с одной стороны, они обеспечивают зарядку аккумуляторов за разумное время (от полутора до четырёх-шести часов, в зависимости от конкретного ЗУ и аккумуляторов), с другой, чётко контролируют окончание заряда в автоматическом режиме.

Наиболее часто встречающийся метод контроля окончания заряда – по спаду напряжения, обычно он называется "метод dV/dt", "метод отрицательной дельты" или "метод -ΔV". Заключается он в том, что в течение всей зарядки напряжение на аккумуляторе медленно растёт – но когда аккумулятор достигает полной ёмкости, оно кратковременно снижается. Это изменение очень небольшое, однако его вполне можно обнаружить – и, обнаружив, прекратить заряд.


Многие производители зарядных устройств также указывают в их характеристиках "микропроцессорный контроль" – но, по сути, это то же самое, что и контроль по отрицательной дельте: если он есть, то он осуществляется специализированным микропроцессором.

Впрочем, контроль по напряжению – не единственный доступный: в момент накопления аккумулятором полной ёмкости в нём резко возрастает давление и температура корпуса, что также можно контролировать. На практике, впрочем, технически проще всего измерять напряжение, поэтому другие методы контроля окончания заряда встречаются редко.

Также многие качественные зарядные устройства имеют два защитных механизма: контроль температуры аккумуляторов и встроенный таймер. Первый останавливает зарядку, если температура превысит допустимый предел, второй – если за разумное время остановка заряда по отрицательной дельте не сработала. И то, и другое может случиться, если мы используем старые или попросту некачественные аккумуляторы.

Закончив зарядку аккумуляторов большим током, наиболее "разумные" зарядные устройства ещё некоторое время дозаряжают их малым током (менее 0,1C) – это позволяет получить от аккумуляторов максимальную возможную ёмкость. Индикатор заряда на устройстве при этом обычно гаснет, показывая, что основная стадия зарядки закончена.

Проблем с подобными устройствами бывает две. Во-первых, не все из них способны с достаточной точностью "поймать" момент спада напряжения – но, увы, это проверить можно только опытным путём. Во-вторых, хотя такие устройства обычно рассчитаны на 2 или 4 аккумулятора, большинство из них не умеют заряжать эти аккумуляторы независимо друг от друга.

Например, если в инструкции к ЗУ указано, что оно может заряжать только 2 или 4 аккумулятора одновременно (но не 1 и не 3) – это значит, что оно имеет лишь два независимых канала заряда. Каждый из каналов обеспечивает напряжение около 3 В, а аккумуляторы включаются в них попарно-последовательно. Следствия из этого два. Очевидное заключается в том, что вы не сможете зарядить в подобном ЗУ одиночный аккумулятор (а, скажем, ваш покорный слуга ежедневно пользуется mp3-плеером, работающим именно от одного AAA-аккумулятора). Менее очевидное – в том, что контроль окончания заряда также осуществляется только для пары аккумуляторов. Если вы используете не слишком новые аккумуляторы, то просто из-за технологического разброса одни из них состарятся немного раньше других – и если в паре попались два аккумулятора с разной степенью старения, то такое ЗУ либо недозарядит один из них, либо перезарядит второй. Разумеется, это будет только усугублять темпы старения худшего из пары.

"Правильное" зарядное устройство должно позволять заряжать произвольное количество аккумуляторов – один, два, три или четыре – а в идеале, ещё и иметь для каждого из них отдельный индикатор окончания зарядки (в противном случае индикатор гаснет, когда зарядится последний из аккумуляторов). Только в таком случае у вас будут некоторые гарантии того, что каждый из аккумуляторов будет заряжен до полной ёмкости независимо от состояния остальных аккумуляторов. Отдельные индикаторы заряда позволяют также отлавливать преждевременно вышедшие из строя аккумуляторы: если из четырёх элементов, использовавшихся вместе, один заряжается значительно дольше или значительно быстрее остальных, значит, именно он и будет слабым звеном всей батареи.

Многоканальные зарядные устройства имеют и ещё одну приятную особенность: во многих из них при зарядке половинного количества аккумуляторов можно выбирать скорость заряда. Скажем, ЗУ Sanyo NC-MQR02, рассчитанное на четыре аккумулятора формата AA, при зарядке одного или двух аккумуляторов позволяет выбирать зарядный ток между 1275 мА (при установке аккумуляторов в крайние слоты) и 565 мА (при установке их в центральные слоты). При установке трёх или четырёх аккумуляторов они заряжаются током 565 мА.

Кроме удобства в эксплуатации, ЗУ данного типа являются и наиболее "полезными" для аккумуляторов: заряд током средней величины с контролем окончания заряда по отрицательной дельте является оптимальным с точки зрения увеличения срока жизни аккумуляторов.

Отдельный подкласс быстрых зарядных устройств – ЗУ с предварительным разрядом аккумуляторов. Сделано это для борьбы с эффектом памяти и может быть весьма полезно для Ni-Cd аккумуляторов: ЗУ проследит, чтобы сначала они были полностью разряжены, и только после этого начнёт заряд. Для современных Ni-MH такая тренировка уже не является обязательной.

Заряд током более 1C с контролем окончания заряда

И, наконец, последний метод – сверхбыстрый заряд, продолжительностью от 15 минут до часа, с контролем заряда опять же по отрицательной дельте напряжения. Достоинств у таких ЗУ два: во-первых, вы почти моментально получаете заряженные аккумуляторы, во-вторых, сверхбыстрый заряд позволяет в большой степени избежать эффекта памяти.

Есть, впрочем, и минусы. Во-первых, не все аккумуляторы хорошо выдерживают быстрый заряд: недостаточно качественные модели, имеющие большое внутреннее сопротивление, могут в таком режиме перегреваться вплоть до выхода из строя. Во-вторых, очень быстрый (15-минутный) заряд может негативно влиять на срок жизни аккумуляторов – опять же, из-за их избыточного нагрева при заряде. В-третьих, такой заряд "наполняет" аккумулятор лишь до 90...95 % ёмкости – после чего для достижения 100 % ёмкости требуется дополнительный дозаряд малым током (впрочем, большинство быстрых ЗУ его осуществляют).

Тем не менее, если вы нуждаетесь в сверхбыстрой зарядке аккумуляторов, приобретение "15-минутного" или "получасового" ЗУ будет хорошим выходом. Разумеется, использовать с ним надо только качественные аккумуляторы крупных производителей, а также своевременно исключать из батарей отслужившие своё экземпляры.

Если же вас устраивает продолжительность заряда в несколько часов, то оптимальными по-прежнему остаются описанные в предыдущем разделе ЗУ с зарядным током менее 1C и контролем окончания заряда по отрицательной дельте напряжения.

Отдельный вопрос – совместимость зарядных устройств с разными типами аккумуляторов. ЗУ для Ni-MH и Ni-Cd, как правило, универсальны: любое из них может заряжать аккумуляторы каждого из этих двух типов. ЗУ для Ni-MH аккумуляторов с окончанием заряда по отрицательной дельте напряжения, даже если для них это не заявлено прямо, могут работать и с Ni-Cd аккумуляторами, а вот наоборот – увы. Дело здесь в том, что скачок напряжения, та самая отрицательная дельта, у Ni-MH заметно меньше, чем у Ni-Cd, поэтому не всякое ЗУ, настроенное на работу с Ni-Cd, сможет "почувствовать" этот скачок на Ni-MH.

Для других же типов аккумуляторов, включая литий-ионные и свинцово-кислотные, эти ЗУ непригодны в принципе – такие аккумуляторы имеют совершенно другую схему заряда.

Методика тестирования

В процессе тестирования аккумуляторов и гальванических элементов в нашей лаборатории мы измеряем следующие их параметры, наиболее важные для определения как качества элементов (то есть их соответствия обещаниям производителя), так и разумной области использования:

ёмкость при различных режимах разряда;
величина внутреннего сопротивления;
величина саморазряда (только для аккумуляторов);
наличие эффекта памяти (только для аккумуляторов).

Основная часть испытательного стенда – это, разумеется, регулируемая нагрузка, позволяющая разряжать заданным током до четырёх аккумуляторов или батареек одновременно.


Для контроля напряжения всех четырёх элементов используется цифровой самописец Velleman PCS10, подключаемый к компьютеру по USB-интерфейсу. Погрешность измерения составляет не более 1 % (собственная погрешность самописца – 3 %, но мы дополнительно калибруем каждый из его каналов, внося соответствующие поправки в итоговые данные), дискретность измерения напряжений – 12 мВ, периодичность измерений – 250 мс.


Схема установки достаточно проста: это четыре отдельных стабилизатора тока, выполненных на операционном усилителе LM324 (эта микросхема как раз состоит из четырёх ОУ в одном корпусе) и полевых транзисторах IRL3502. Управляются все стабилизаторы одним многооборотным переменным резистором, поэтому ток на них выставляется одновременно – это упрощает настройку установки на конкретный тест и сводит к минимуму погрешность ручной установки тока. Возможные пределы изменения нагрузки – от 0 до 3 А на каждый элемент питания.

Для измерения напряжения на ещё одной микросхеме LM324 собраны четыре дифференциальных усилителя, входы которых подключены непосредственно к контактам колодки, в которую устанавливаются аккумуляторы – это полностью исключает погрешность, вносимую потерями на соединительных проводах. С выходов дифференциальных усилителей сигнал поступает на самописец.

Кроме того, в схеме присутствует не показанный на рисунке выше генератор прямоугольных импульсов, периодически то включающий, то полностью отключающий нагрузку. Длительность "нуля" на выходе генератора равна 6,0 с, длительность "единицы" – 2,25 с. Генератор позволяет протестировать элементы питания в режиме работы с импульсной нагрузкой и, в частности, определить их внутреннее сопротивление.

Также на рисунке выше не показана схема питания установки: она подключается к блоку питания компьютера, его выходное напряжение (+12 В) понижается до +9 В стабилизатором на микросхеме 78L09, а необходимое для двуполярного питания ОУ напряжение -9 В формируется емкостным конвертером на микросхеме ICL7660. Впрочем, это уже малосущественные нюансы, которые мы обсуждаем лишь затем, чтобы заранее предупредить вопросы о корректности проведения измерений, могущие возникнуть у сведущих в электронике читателей.

Для охлаждения силовых транзисторов, шунтов обратной связи и собственно тестируемых элементов питания вся установка обдувается стандартным 12-вольтовым вентилятором типоразмера 80x80x20 мм.


Для получения и автоматической обработки данных с самописца была написана специальная программа – к счастью, компания Velleman для многих своих приборов поставляет весьма простые в использовании SDK и наборы библиотек. Программа позволяет в реальном времени строить графики напряжения на элементах питания в зависимости от прошедшего с начала теста времени, а также рассчитывать – по окончании теста – их ёмкость. Последняя, очевидно, равна произведению разрядного тока и времени, за которое элемент достиг нижней границы напряжения.

Граница же выбирается в зависимости от типа элемента и условий разряда. Для аккумуляторов при малых токах это 1,0 В – ниже разряжать их просто нельзя, так как это может привести к необратимой порче элемента; на больших токах нижняя граница снижается до 0,9 В, чтобы должным образом учесть внутреннее сопротивление аккумулятора.

Для батареек практический смысл имеют две границы разряда. С одной стороны, элемент считается полностью опустошённым, если напряжение на нём упало до 0,7 В – поэтому логично измерять ёмкость именно по факту достижения этого уровня. С другой стороны, не все питающиеся от батареек устройства способны работать при напряжениях ниже 0,9 В, поэтому практическое значение имеет и то, когда аккумулятор разрядился до данного уровня. В наших тестах мы будем приводить оба этих значения – хотя многие элементы, достигнув уровня 1,0 В, дальше разряжаются очень быстро, есть и такие, которые сравнительно долго держатся между 0,7 В и 0,9 В.

Итак, установив элементы питания, выставив нужный ток и включив самописец, мы начинаем тестирование. Для каждого типа элементов питания были выбраны несколько режимов разрядки – с целью получить наиболее интересные и характерные результаты.

Для батареек это:

разрядка малым постоянным током: 250 мА для элементов формата АА, 100 мА – формата ААА;
разрядка большим постоянным током: 750 мА для элементов формата АА, 300 мА – формата ААА;

Для Ni-MH аккумуляторов это:

разрядка малым постоянным током: 500 мА для элементов формата АА, 200 мА – формата ААА;
разрядка большим постоянным током: 2500 мА для элементов формата АА, 1000 мА – формата ААА;
разрядка импульсным током: длительность импульса 2,25 с, длительность паузы 6,0 с, амплитуда тока 2500 мА для элементов формата АА и 1000 мА – формата ААА.

Для Ni-Cd аккумуляторов формата AA разрядные режимы выбраны такими же, как и для Ni-MH аккумуляторов формата AAA – с учётом схожей паспортной ёмкости первых и вторых.

Если при тестировании батареек всё просто – распечатал упаковку, вставил батарейку в установку, запустил тест – то аккумуляторы надо предварительно готовить, ибо все они, кроме упоминавшейся выше серии "Ready To Use", на момент покупки полностью разряжены. Поэтому тестирование аккумуляторов проводилось строго по следующей схеме;

измерение остаточной ёмкости на малом токе (только для "Ready To Use" моделей);
зарядка;
разрядка большим током без измерения ёмкости (тренировка);
зарядка;
разрядка большим током с измерением ёмкости;
зарядка;
разрядка импульсным током с измерением ёмкости;
зарядка;
разрядка малым током с измерением ёмкости;
зарядка;
выдержка в течение 7 суток;
разрядка малым током с измерением ёмкости – далее результат сравнивается с полученным на предыдущем шаге и рассчитывается процент потери ёмкости за счёт саморазряда за 1 неделю;

В тестах батареек мы используем на каждом этапе по одному элементу каждой марки. В тестах аккумуляторов – минимум по два элемента каждой марки.

Для зарядки аккумуляторов мы используем зарядное устройство Sanyo NC-MQR02.


Это ЗУ быстрой зарядки с контролем отрицательной дельты напряжения и температуры аккумуляторов, позволяющее заряжать от одного до четырёх (в произвольных комбинациях) аккумуляторов формата AA, а также один или два аккумулятора формата AAA. Первые можно заряжать как током 565 мА, так и 1275 мА (если аккумуляторов не более двух), вторые – током по 310 мА на элемент. За несколько лет регулярного использования это ЗУ убедительно доказало свою высокую эффективность и совместимость с любыми аккумуляторами, что и обусловило его выбор для проведения тестирования. Чтобы избежать потери ёмкости за счёт саморазряда, во всех тестах, кроме собственно теста на саморазряд, аккумуляторы заряжаются непосредственно перед началом измерений.


Измерения на постоянном токе дают логичную картину (пример представлен на графике выше): напряжение на элементах быстро снижается в первые минуты теста, потом выходит на более-менее постоянный уровень, а в самом конце теста, на последних процентах заряда, снова быстро падает.


Несколько менее банальны измерения на импульсном токе. На рисунке выше представлен сильно увеличенный участок графика, полученного в таком тесте: провалы напряжения на нём соответствуют включению нагрузки, подъёмы – отключению. Из этого графика легко подсчитать внутреннее сопротивление аккумулятора: как вы видите, при амплитуде тока 2,5 А напряжение проседает на 0,1 В – соответственно, внутреннее сопротивление равно 0,1/2,5 = 0,04 Ом = 40 мОм. Важность этого параметра станет более ясна из наших последующих статей, в которых мы сравним друг с другом различные типы батареек и аккумуляторов – а пока отметим лишь, что большое внутреннее сопротивление вызывает не только "просадку" напряжения под нагрузкой, но и потери накопленной в аккумуляторах энергии на нагрев самих себя.


В полном же масштабе импульсы сливаются друг с другом в сплошную полосу, верхняя граница которой соответствует напряжению на элементе питания без нагрузки, нижняя – с нагрузкой. По форме этой полосы можно оценить не только время работы элемента под тяжёлой импульсной нагрузкой, но и зависимость его внутреннего сопротивления от глубины разряда: например, как вы видите, у Ni-MH аккумулятора компании Sony сопротивление почти постоянно и начинает расти только при полном его разряде. Хороший результат.

Как наверняка заметят многие наши читатели, мы выбрали очень жёсткие режимы разряда: ток 2,5 А весьма велик, а 6-секундная пауза между импульсами не даёт элементу как следует "отдохнуть" (как мы уже упоминали выше, батарейки, немного "отлежавшись", могут частично восстановить свою ёмкость). Тем не менее, сделано это нарочно, чтобы максимально ярко и наглядно показать различия между элементами питания разных типов и разного качества. Для того же, чтобы приблизиться к более мягким реальным условиям эксплуатации, а также к условиям, в которых производители аккумуляторов измеряют их ёмкость, мы добавили в тестирование режимы разряда с относительно небольшим постоянным током.

К слову, сами производители обычно указывают разрядные режимы так же, как и зарядные – пропорционально ёмкости элемента. Скажем, штатные измерения ёмкости аккумуляторов положено проводить при токе 0,2C – то есть 540 мА для аккумулятора на 2700 мА*ч, 500 мА для аккумулятора на 2500 мА*ч, и так далее. Однако, так как аккумуляторы одного форм-фактора в наших тестах достаточно близки по характеристикам, мы решили тестировать их при фиксированных токах, не зависящих от паспортной ёмкости конкретного экземпляра – это сильно упрощает представление и сопоставление результатов.

И раз уж речь зашла о ёмкости, стоит упомянуть о некоторой обманчивости такой общепринятой единицы, как ампер-час. Дело в том, что запасённая в элементе питания энергия определяется не только тем, сколько времени он держал заданный ток, но и тем, какое на нём было при этом напряжение – так, совершенно очевидно, что литиевая батарея ёмкостью 3 А*ч и напряжением 3 В способна запасти вдвое больше энергии, чем батарея ёмкостью те же 3 А*ч, но напряжением 1,5 В. Поэтому правильнее указывать ёмкость не в ампер-часах, а в ватт-часах, получая их через интеграл зависимости напряжения на аккумуляторе от времени разряда при его постоянном токе. Кроме естественного учёта разного рабочего напряжения разных элементов, такая методика позволяет ещё и учесть, насколько хорошо данный конкретный элемент держал напряжение под нагрузкой. Скажем, если две батарейки разрядились до уровня 0,7 В за 60 минут, но первая большую часть этого времени держалась на уровне 1,1 В, а вторая – на уровне 0,9 В, совершенно очевидно, что первая имеет большую реальную ёмкость – несмотря на то, что итоговое время их разряда одинаково. Особенно это важно в свете того, что большинство современных электронных устройств потребляют не постоянный ток , а постоянную мощность – и элементы с большим напряжением в них будут работать в более выгодных режимах.

Ближе к практике: примеры энергопотребления

Разумеется, помимо абстрактного тестирования батареек на управляемой нагрузке, нам было интересно, как же потребляют ток реальные устройства. Для прояснения этого вопроса мы, оглядев окружающее пространство, случайным образом выбрали набор предметов, питающихся от различных батареек.



Только часть этого набора


В случае, если устройство потребляло более-менее постоянный ток, измерения проводились обычным цифровым мультиметром Uni-Trend UT70D в режиме амперметра. Если же ток потребления сильно менялся, то измеряли мы его, включив между устройством и питающими его батарейками низкоомный шунт, падение напряжения на котором фиксировалось осциллографом Velleman PCSU1000.

Результаты представлены ниже в таблице:


Что же, среди наших устройств встретились и довольно "прожорливые" – фотовспышка, фотоаппарат и фонарь с лампой накаливания. Если последний потреблял положенные ему 700 мА постоянно и непрерывно, то у первых двух характер энергопотребления оказался более интересным.

Цена вертикального деления на осциллограммах ниже равна 200 мА, нуль соответствует первому делению снизу.



Фотоаппарат
Цена деления осциллограммы – 200 мА


В обычном режиме Canon PowerShot A510, питающийся от двух элементов типа АА, потреблял около 800 мА – немало, но и не рекордно много. Однако при включении (первая группа узких пиков на осциллограмме), движение объектива (вторая группа пиков) и фокусировке (третья группа) ток мог вырастать более чем в полтора раза, до 1,2...1,4 А. Что интересно, сразу после нажатия на "спуск" энергопотребление фотоаппарата упало – при записи только что снятого кадра на флэшку он автоматически выключает экран. Впрочем, как только кадр был записан, потребление поднялось обратно до 800 мА.



Фотовспышка
Цена деления осциллограммы – 100 мА


Фотовспышка Pentax AF-500FTZ (четыре элемента формата АА) потребляла ток ещё интереснее: он был почти равен нулю в периоды между срабатываниями, мгновенно вырастал до 700 мА сразу после срабатывания (такой момент и запечатлён на осциллограмме выше), после чего в течение 10...15 секунд плавно снижался обратно к нулю (рваная линия осциллограммы получилась из-за того, что вспышка потребляет ток с частотой около 6 кГц). При этом вспышка демонстрировала чёткую зависимость между временем спада тока и напряжением питающих её элементов: так как ей надо было каждый раз накопить определённую энергию, то чем сильнее проседало под нагрузкой напряжение питания, тем больше времени требовалось для накопления нужного запаса. Это, кстати, хорошо иллюстрирует одну из ролей внутреннего сопротивления элементов питания – чем оно меньше, тем меньше при прочих равных просядет напряжение и тем быстрее вы сможете сделать следующий кадр со вспышкой.

В следующих же наших статьях, где мы будем рассматривать уже конкретные типы и экземпляры батареек и аккумуляторов, примерное представление об энергетических потребностях разных устройств поможет нам определить, какие из элементов питания для них подходят.

Практически установлено, что лучше других поддаются регенерации наиболее распространенные стаканчиковые марганцево-цинковые элементы и батареи, такие, как 3336Л (КБС-Л-0,5), 3336Х (КБС-Х-0,7), 373, 336. Хуже восстанавливаются галетные марганцево-цинковые батареи "Крона ВЦ", БАСГ и другие.
Наилучший способ регенерации химических источников питания - пропускание через них асимметричного переменного тока, имеющего положительную постоянную составляющую. Простейшим источником асимметричного тока является однополупериодный выпрямитель на диоде, шунтированном резистором. Выпрямитель подключают к вторичной низковольтной (5-10 в) обмотке понижающего трансформатора, питающегося от сети переменного тока. Однако такое зарядное устройство имеет невысокий к. п. д.- приблизительно 10% и, кроме этого, заряжаемая батарея при Случайном отключении напряжения, питающего трансформатор, может разряжаться.
Лучших результатов можно добиться, если применять зарядное устройство, выполненное по схеме, представленной на рис.
1. В этом устройстве вторичная обмотка II питает два отдельных выпрямителя на диодах Д1 и Д2, к выходам которых подключены две заряжаемые батареи Б1 и Б2.

рис. 1
Параллельно диодам Д1 и Д2 включены конденсаторы C1 и С2. На рис. 2 показана осциллограмма тока, проходящего через батарею. Заштрихованная часть периода - это час, в течение которого через батарею протекают импульсы разрядного тока.

РАЗВЕРНУТЬ СХЕМУ В ПОЛНЫЙ ЭКРАН

рис. 2
Эти импульсы, очевидно, особым образом влияют на ход электрохимических процессов в активных материалах гальванических элементов. Процессы, происходящие при этом, ещё недостаточно изучены и описания их нет в популярной литературе. При отсутствии импульсов разрядного тока (что бывает при отсоединении конденсатора, включенного параллельно диоду) регенерация элементов практически прекращалась.
Опытным путем установлено, что марганцево-цинковые гальванические элементы сравнительно мало критичны к величине постоянной составляющей и форме отрицательных импульсов зарядного тока. Это позволяет использовать зарядное устройство без дополнительной регулировки постоянной и переменной составляющих зарядного тока для восстановления, различных элементов и батарей. Отношение постоянной составляющей тока заряда к эффективному значению его переменной составляющей должно быть в пределах 5-25.
Производительность зарядного устройства можно повысить, включая для заряда по несколько элементов последовательно. При этом надобно учесть, что в процессе заряда э. д. с. элементов может возрастать до 2-2,1.в. Исходя из этого и зная напряжение на вторичной обмотке трансформатора, определяют число одновременно заряжаемых элементов.
Подключать к зарядному устройству батареи типа 3336Л удобнее через лампочку накаливания 2,5в Х 0,2а, играющую роль бареттера и одновременно служащую индикатором степени заряда. По мере восстановления электрического заряда батареи свечение лампочки уменьшается. Элементы типа "Марс" (373) надобно подключать без лампочки, так как постоянная составляющая зарядного тока такого элемента должна быть 200-400 ма. Элементы 336 подключают группами по три штуки, включенных последовательно. Условия заряда такие же, как и для батарей типа 3336. Зарядный ток для элементов 312, 316 должен быть 30-60 ма. Возможен одновременный заряд больших групп батарей 3336Л (3336Х) непосредственно от сети (без трансформатора) через два включенных последовательно диода Д226Б, параллельно которым включен конденсатор 0,5 мкф с рабочим напряжением 600 в.
Зарядное устройство может быть выполнено на базе трансформатора электробритвы "Молодость", пмеющего две вторичные обмотки с напряжением 7,5 в. Удобно использовать также накальное напряжение 6,3 в любого сетевого лампового радиоприемника. Естественно, то или иное решение выбирают в зависимости от требуемого максимального зарядного тока, определяемого типом восстанавливаемых элементов. Из этого же исходят, выбирая выпрямительные диоды.

РАЗВЕРНУТЬ СХЕМУ В ПОЛНЫЙ ЭКРАН

рис. 3
Для того, чтобы оценить эффективность данного метода восстановления гальванических элементов и батарей, на рис. 3 представлены графики разрядного напряжения для двух батарей 3336Л при сопротивлении нагрузки Rн=10 ом. Сплошными линиями показаны кривые разряда новых батареи, а пунктирными - после двадцати полных циклов разряд - заряд. Таким образом, работоспособность батарей после двадцатиразового использования ещё совершенно удовлетворительна.
Сколько же циклов разряд-заряд могут выдерживать гальванические элементы и батареи? Очевидно, это сильно зависит от условий эксплуатации, сроков хранения и других факторов. На рис. 4 показано изменение, времени разряда на нагрузку Rн=10 ом двух батарей 3336Л (кривые 1 и 2) в течение 21 цикла разряд-заряд. Батареи разряжались до напряжения не ниже 2,1 в, режим заряда обеих батарей - одинаков. В течение указанного времени эксплуатации батарей час разряда уменьшилось со 120-130 мин до 50-80 мин, то есть почти вдвое.

РАЗВЕРНУТЬ СХЕМУ В ПОЛНЫЙ ЭКРАН

рис. 4
Такое же уменьшение емкости допускается техническими условиями в конце установленного максимального срока хранения. Практически удается восстанавливать элементы и батареи до тех пор, пока у них не будут полностью разрушены цинковые стаканчики или не высохнет электролит. Установлено, что больше циклов выдерживают элементы, интенсивно разряжающиеся на мощную нагруэку (например, в фонариках, в блоках питания электробритв). Не следует разряжать элементы и батареи до напряжения ниже 0,7 в на ингредиент. Восстанавливаемость элементов 373 относительно хуже, так как после 3-6 циклов их емкость резко уменьшается.
О необходимой продолжительности заряда можно сделать, вывод, пользуясь графиком; представленным на рис.
4. При увеличении времени заряда более 5 часов восстановленная емкость батарей увеличивается в среднем весьма незначительно. Поэтому можно считать, что при указанных величинах зарядного тока минимальное час восстановления составляет 4-6 часов, причем явных признаков конца заряда мар-ганцево-цинковые элементы не имеют и к перезаряду нечувствительны.
Применение асимметричного тока оказывается полезным также для зарядки и формовки аккумуляторов и аккумуляторных батарей. Этот вопрос, однако, ещё требует проверки на практике и может открыть новые интересные возможности аккумуляторов.
(Радио 6-72, с.55-56)

http://www. /load/16-37/index. html

http:///document4979.html

Для восстановления работоспособности аккумуляторов (многократно заряжаемых гальванических элементов, основанных на обратимом преобразовании электрической энергии в химическую и наоборот) используют специальные зарядные устройства, позволяющие «закачать» в разряженный аккумулятор очередную юрцию энергии. В отличие от аккумуляторов гальванические элементы и батареи одноразового использования изначально не предполагалось подзаряжать (иначе они и именовались бы по иному). Эднако в процессе эксплуатации некоторых гальванических элементов и батарей выявилась возможность частичного восстановления их свойств путем зарядки.
Для зарядки аккумуляторов используют несколько методов, основным из которых следует считать зарядку постоянным током. Помимо классического, используют метод зарядки по правилу ампер-часов, зарядки пульсирующим и/или симметричным током, зарядки при постоянном напряжении, эенирующей попеременной зарядки-разрядки с регулируемых соотношением и преобладанием зарядной компоненты, экспресс-заряд, заряд ступенчатым током, «плавающий» заряд, эмпенсационный подзаряд и т. д.
Неплохие результаты дает зарядка аккумулятора током, изменяющимся в соответствии с так называемым «законом ампер-часов» Вудбриджа. В начале зарядки ток максимален, а затем уменьшается по закону, описываемому экспоненциальной кривой. При зарядке в соответствии с «законом ампер-часов» ток может достигать 80% от емкости аккумулятора, в результате чего время зарядки значительно сокращается.
Каждый из перечисленных способов имеет как преимущества, так и недостатки. Самым распространенным и надежным является зарядка постоянным током. Появление микросхем стабилизаторов напряжения, позволяющих работать в режиме абилизации тока, делает применение этого способа еще более привлекательным. Кроме того, только зарядка постоянным током обеспечивает наилучшее восстановление емкости аккумулятора в случае, когда процесс разбивают, как правило, на две ступени: заряжают номинальным током и вдвое меньшим.
Например, номинальное напряжение батареи из четырех аккумуляторов Д-0,25 емкостью 250 мА-ч - 4,8...5 В. Номинальный зарядный ток обычно выбирают равным 0,1 от емкости, т. е. 25 мА. Заряжают таким током до тех пор, пока напряжение на аккумуляторной батарее не достигнет 5,7...5,8 В при подключенных клеммах зарядного устройства, а затем в течение двух-трех часов продолжают заряжать током около 12 /и/А.
Возможность увеличения срока службы сухих гальванических элементов (метод регенерации) была заложена патентом Эрнста Веера в 1954 г. (Патент США). Регенерацию осуществляют пропусканием через гальванический элемент или их группу асимметричного переменного тока с соотношением полупериодов 1:10. По данным разных авторов средний срок службы гальванических элементов может быть увеличен таким образом от 4 до 20 раз.
Согласно практическим рекомендациям фирмы «Варта» (ФРГ):

    регенерации поддаются элементы, напряжение которых ниже номинала не более чем на 10%; напряжение для регенерации элемента не должно превышать более чем на 10% номинальное значение; ток регенерации должен быть в пределах 25...30% от максимального разрядного тока для данного элемента; время регенерации должно в 4,5...6 раз превышать время разрядки; регенерацию следует производить непосредственно вслед за разрядкой батареи; не следует производить регенерацию для элементов с поврежденным цинковым корпусом, с вытекшим электролитом.

Помимо зарядно-разрядных операций для некоторых видов аккумуляторов актуальным вопросом является регенерация (восстановление) по мере возможности их исходных свойств, утраченных в результате неправильного хранения и/или эксплуатации.
Приемы «реанимации» и восстановления ресурсов разряженных электрических батарей (сухих гальванических батарей и элементов) в общих чертах похожи и порой отвечают соответствующим процедурам для аккумуляторов.
Устройства для заряда, восстановления или регенерации химических источников тока обычно содержат стабилизатор тока, иногда устройство защиты от перенапряжения или перезарядки, приборы и схемы контроля и регулирования.
Так, например, на практике для никель-кадмиевых аккумуляторов получили распространение несколько типов зарядных устройств.

1. Зарядное устройство с фиксированным постоянным током. Зарядку аккумулятора прекращают вручную по истечении времени, достаточного для полной зарядки. Зарядный ток должен составлять 0,1 от емкости аккумулятора в течение 12ч.

2. Ток зарядки фиксированный. Напряжение на заряжаемом аккумуляторе контролируется пороговым устройством. При достижении заданного напряжения зарядка автоматически прекращается.

3. Зарядное устройство заряжает аккумулятор постоянным током в течение фиксированного времени. Зарядка автоматически прекращается по истечении, например, 15 ч. Последний вариант зарядного устройства имеет существенный недостаток. Перед зарядкой аккумулятор должен быть разряжен до напряжения 1 В, только тогда при зарядке током 0,1 от емкости аккумулятора в течение 15 ч аккумулятор зарядится до номинальной емкости. В противном случае при зарядке не полностью разряженного аккумулятора в течение указанного времени произойдет его перезарядка, что ведет к сокращению времени службы.

В первых двух вариантах устройств зарядка постоянным стабильным током не является оптимальной. Исследованиями установлено, что в самом начале цикла зарядки аккумулятор наиболее восприимчив к сообщаемому ему количеству электричества. К концу зарядки процесс накопления энергии аккумулятора замедляется.

СХЕМЫ УСТРОЙСТВ ДЛЯ РЕГЕНЕРАЦИИ ГАЛЬВАНИЧЕСКИХ
ЭЛЕМЕНТОВ ПИТАНИЯ (БАТАРЕЕК)

Автор статьи: Неизвестен

google_protectAndRun("render_ads. js::google_render_ad", google_handleError, google_render_ad); Проблема повторного использования гальванических элементов питания давно волнует любителей электроники. В технической литературе неоднократно публиковались различные методы "оживления" элементов, но, как правило, они помогали только один раз, да и ожидаемой емкости не давали.

В результате экспериментов удалось определить оптимальные токовые режимы регенерации и разработать зарядные устройства, пригодные для большинства элементов. При этом они обретали первоначальную емкость, а иногда и несколько превосходящую ее.

Восстанавливать нужно элементы, а не батареи из них, поскольку даже один из последовательно соединенных элементов батареи, пришедший в негодность (разряженный ниже допустимого уровня) делает невозможным восстановление батареи.

Что касается процесса зарядки, то она должна проводиться асимметричным током с напряжением 2,4...2,45 В . При меньшем напряжении регенерация весьма затягивается и элементы после 8...10 часов не набирают и половинной емкости. При большем же напряжении нередки случаи вскипания элементов, и они приходят в негодность.

Перед началом зарядки элемента необходимо провести его диагностику, смысл которой состоит в определении способности элемента выдерживать определенную нагрузку. Для этого к элементу подключают вначале вольтметр и измеряют остаточное напряжение, которое не должно быть ниже 1 В . (Элемент с меньшим напряжением непригоден к регенерации.) Затем нагружают элемент на 1...2 секунды резистором 10 Ом , и, если напряжение элемента упадет не более чем на 0,2 В , он пригоден к регенерации.

Электрическая схема зарядного устройства, приведенная на рис. 1 (предложил), рассчитана на зарядку одновременно шести элементов (G1...G6 типа 373, 316, 332, 343 и других аналогичных им).

https://pandia.ru/text/77/496/images/image006_250.jpg" alt="Электрическая" width="439" height="222 src=">

Стабилитрон VD1 типа КС119А ограничивает напряжение заряда элемента. Он может быть заменен набором из последовательно включенных диодов - двух кремниевых и одного германиевого - с допустимым током не менее 100 мА . Диоды VD2 и VD3 - любые кремниевые с тем же допустимым средним током, например КД102А, КД212А .

Емкость конденсатора С1 - от 3 до 5 мкФ на рабочее напряжение не менее 16В . Цепь из переключателя SA1 и контрольных гнезд Х1, Х2 для подключения вольтметра. Резистор R1 - 10 Ом и кнопка SB1 служат для диагностики элемента G1 и контроля его состояния до и после регенерации.

Нормальному состоянию соответствует напряжение не менее 1,4 В и его уменьшение при подключении нагрузки не более чем на 0,2 В .

О степени заряженности элемента можно также судить по яркости свечения лампы HL1 . До подключения элемента она светится примерно в полнакала. При подключении разряженного элемента яркость свечения заметно увеличивается, а в конце цикла зарядки подключение и отключение элемента почти не вызывает изменения яркости.

При подзарядке элементов типа СЦ-30, СЦ-21 и других (для наручных часов) необходимо последовательно с элементом включать резистор на 300...500 Ом . Элементы батареи типа 336 и других заряжаются поочередно. Для доступа к каждому из них нужно вскрыть картонное донышко батареи.

плюс" к "плюсу"). В качестве диодов VD1, VD2 подойдут любые с рабочим обратным напряжением не менее 400 В .

В помощь радиокружку"

С амая разнообразная бытовая аппаратура (радиоприемники, магнитофоны, электропроигрывающие устройства), измерительные приборы, электронные часы и многие другие конструкции питаются от гальванических элементов и батарей. Проходит время, и источник питания приходится заменять, выбрасывая порою еще пригодные к работе элементы и батареи. Пригодные потому, что их, подобно автомобильной аккумуляторной батарее, можно подзарядить и пустить в работу вновь.

П роцесс восстановления работоспособности гальванического источника питания называют регенерацией, впервые о нем заговорили более трех десятилетий назад. Практика показала, что не каждый элемент (или батарея) пригоден для регенерации, а лишь тот, у которого напряжение, а значит и емкость, не опустились ниже определенной отметки. К примеру, для батареи 3336 таким пределом можно считать напряжение 2,4 В. Гальванический же элемент подлежит регенерации в случае, если его ЭДС не более чем на 0,2 В выше напряжения под нагрузкой. Причем ток нагрузки во время проверки должен быть равен примерно 5...10% значения номинальной емкости элемента.

С хема простейшего прибора для проверки способности элемента (или батареи) к регенерации приведена на рис. 109. Вольтметром PV1 измеряют ЭДС и напряжение испытываемого источника (его подключают к зажимам ХТ1 и ХТ2 в указанной на схеме полярности), а кнопочными выключателями SB1 и SB2 задают тот или иной режим разрядки (сопротивления нагрузки).

К ак свидетельствуют эксперименты, наиболее успешно поддаются восстановлению элементы (батареи), эксплуатирующиеся при больших токах нагрузки (детские игрушки, карманные фонари, переносные магнитофоны и т. д.), хуже - источники, работающие при малых токах (портативные радиоприемники, электромеханические часы-будильники).

Р ассказ о восстановлении гальванических элементов (батарей) следует начать, пожалуй, с того случая, когда подобный источник питания долго хранился и высох. Тогда нужно проделать шилом или тонким гвоздем два отверстия в верхней картонной крышке и битумной заливке элемента и впрыснуть в одно из отверстий с помощью медицинского шприца немного воды (лучше дистиллированной). При этом через второе отверстие будет выходить вытесняемый воздух. Кроме того, это отверстие станет контрольным - как только в нем покажется вода, шприц вынимают.

П осле "укола" отверстие заплавляют горячим паяльником или пламенем зажженной спички. Через некоторое время, а иногда и сразу, элемент готов к работе.

А налогично поступают с батареей, делая "укол" в каждый ее элемент.

Е сли же элемент (батарея) потерял первоначальную емкость во время эксплуатации, его подключают к зарядному устройству. А чтобы элемент зарядился, нужно пропустить через него вполне определенный зарядный ток и продержать элемент в таком состоянии положенное время. Обычно для аккумуляторов зарядный ток берется равным десятой части его емкости. Такое же соотношение можно принять и для гальванических источников питания. Поэтому зарядные устройства несколько отличаются друг от друга по схемотехническим решениям: ведь каждое из них обеспечивает зарядный ток для "своей" батареи.

У стройство, схема которого приведена на рис. 110, заряжает элементы 332 и 316 и даже малогабаритные аккумуляторы Д-0,2. Оно обеспечивает зарядный ток около 20 мА. Основная часть устройства - выпрямитель, собранный на диодах VD1 и VD2. Выпрямленное напряжение сглаживается фильтром C1R2C2 и подается на зажимы ХТ1 и ХТ2, к которым подключают заряжаемый источник питания. Стабилитрон VD3 предохраняет от пробоя конденсаторы при случайном отключении нагрузки, резистор R1 ограничивает зарядный ток.

Р езистор R1 лучше всего применить марки ПЭВ (остеклованный, проволочный), но его можно составить и из четырех последовательно соединенных МЛТ-2 сопротивлением по 2 кОм (один из резисторов - 2,2 кОм). Диоды могут быть любые другие, рассчитанные на обратное напряжение не ниже 300 В и выпрямленный ток более 50 мА, а стабилитрон (кроме указанного на схеме) - Д809, Д814А, Д814Б. Конденсаторы - К50-6 или другие. Зажимы - любой конструкции. При отсутствии гасящего резистора R1 большой мощности или резисторов МЛТ-2 вместо него подойдет обыкновенный бумажный конденсатор емкостью 0,2...0,25 мкФ на номинальное напряжение не ниже 400 В.

Д ля зарядки элементов 373, 343 и батарей 3336 предназначено другое устройство (рис. 111), в котором гасящий резистор (он должен быть значительно большей мощности по сравнению с таким же резистором предыдущего устройства) заменен бумажным конденсатором С1. Параллельно конденсатору включен шунтирующий резистор R1, позволяющий конденсатору разряжаться после выключения устройства. Последующие цепи из диодов, конденсаторов и резисторов имеют такое же назначение, что и в предыдущем устройстве.

Н е удивляйтесь, что к этому зарядному устройству предлагается подключать источники с разным напряжением - 1,5 и 4,5 В. Зарядный ток у них разный, поэтому при подключении, скажем, элемента 373 из-за возрастания тока через него напряжение на выводах элемента упадет до указанного.

Д о сих пор мы говорили о зарядке гальванических элементов и батарей строго постоянным током, т. е. выпрямленным током, "очищенным" от пульсации переменного напряжения. Несколько лучшие результаты получаются при зарядке этих источников питания так называемым асимметричным переменным током, имеющим положительную постоянную составляющую. Простейшим источником такого тока является однополупериодный выпрямитель на диоде, шунтированном постоянным резистором, и без фильтрующих конденсаторов. Выпрямитель подключают к вторичной обмотке понижающего трансформатора с напряжением 5...10В.

Т огда при одном полупериоде сетевого напряжения ток будет протекать через диод и заряжаемый элемент (или батарею), а при другом - через резистор и ту же нагрузку. Изменением сопротивления резистора можно подбирать соотношение (асимметрию) между постоянной составляющей тока зарядки и эффективным значением его переменной составляющей в пределах 5...25 (практически это соотношение поддерживают в пределах 13...17).

В ариант с шунтирующим резистором обладает, к сожалению низким КПД и еще одним недостатком - при случайном отключении сетевого напряжения (или нарушении контакта сетевой вилки) источник питания будет разряжаться через резистор и вторичную обмотку трансформатора.

Б олее оптимален вариант с шунтирующим конденсатором (рис. 112). Его емкость такова, что на частоте 50 Гц емкостное сопротивление конденсатора получается равным примерно 320 Ом - оно и определяет асимметрию. Кроме того, в зарядную цель включена лампа HL1, выполняющая как роль стабилизатора зарядного тока, так и индикатора степени заряженности нагрузки - по мере зарядки источника G1 яркость лампы падает.

П онижающий трансформатор Т1 выполнен с отводами во вторичной обмотке. Это нужно для подбора напряжения, подаваемого на выпрямитель в зависимости от зарядного тока нагрузки.

П ри подключении к выпрямителю выводов 3-6 вторичной обмотки устройство готово к зарядке - регенерации батарей 3336 либо элементов 373, требующих постоянной составляющей зарядного тока 200мА. Если же подать на выпрямитель напряжение с выводов 4-6, к зарядному устройству можно подключать элементы 343, 332, 316. Если ток зарядки элементов 373 или 343 окажется чрезмерным, его нетрудно уменьшить подключением к выпрямителю выводов 3-5. Одним словом, комбинацией подключения к выпрямителю тех или иных выводов вторичной обмотки можно подбирать нужный зарядный ток.

Е сли же в вашем распоряжении окажутся лишь трансформаторы без отводов во вторичной обмотке, следует руководствоваться тем, что подводимое к выпрямителю (иначе говоря, снимаемое с вторичной обмотки трансформатора) эффективное значение напряжения должно быть 2,3...2,4 В на один регенерируемый элемент. Поэтому при регенерации, например, батареи 3336, это напряжение должно составить 6,9...7,2 В.

Р егенерацию желательно проводить раздельно для каждого гальванического элемента, однако в некоторых случаях можно включать последовательно два-три элемента и подключать получившуюся батарею к зарядному устройству. Но такой вариант возможен лишь при одинаковой или близкой степени разряженности всех элементов. В противном случае самый "худший" (наиболее разряженный) элемент ограничивает ток, что скажется на времени и качестве регенерации.

В ыпрямительный диод может быть любой низковольтный, допускающий ток до 300 мА, оксидный конденсатор - К50-6, лампа - на напряжение 3,5 или 6,3 В (МН 3,5-0,14, МН 6,3-0,3). Трансформатор - самодельный, изготовленный на базе унифицированного выходного трансформатора звука ТВЗ-1-1. Его первичная обмотка остается, а вторичная дорабатывается - у нее делают отводы. Для этого от вторичной обмотки отматывают (но не обрывают) 30 витков, делают отвод (вывод 4), наматывают 26 витков и вновь делают отвод (вывод 5), наматывают оставшиеся 4 витка и подпаивают к концу провода вывод (6).

Т рансформатор может быть изготовлен самостоятельно на магнитопроводе Ш16Х24 или аналогичном по сечению. Сетевая обмотка (выводы 1-2) должна содержать 2400 витков провода ПЭВ-2 0,15, вторичная - 70 (выводы 3-4), 26 (выводы 4-5) и 4 (выводы 5-6) витка провода ПЭВ-2 0,57.

В о время регенерации периодически проверяют ЭДС элемента. Как только она возрастет до 1,7...2,1 В и в течение последующей часовой зарядки будет оставаться стабильной, регенерацию заканчивают.

О б эффективности регенерации асимметричным током можно судить, проверяя энергетические параметры элемента или батареи: ЭДС и напряжение, продолжительность разрядки до определенного напряжения (при одинаковом сопротивлении нагрузки) до и после зарядки.

5.5 Зарядное устройство для гальванических элементов

Рассмотрим возможность многократного использования гальванических элементов и батарей. Как известно, наибольший эффект дает зарядка асимметричным током при соотношении зарядного и разрядного токов 10: 1.

Схема зарядного устройства представлена на рис. 115. Генератор импульсов с регулируемой скважностью выполнен на логических элементах DD1.1-DD1.3. Частота следования импульсов около 100 Гц. На транзисторах VT1 и VT2 собран ключ, усиливающий импульсы генератора по току. Если на выходе логического элемента DD1.3 напряжение низкого уровня, транзисторы VT1, VT2 открыты, и через батарею, подключенную к гнездам XS1, протекает зарядный ток. При напряжении высокого уровня на выходе элемента DD1.3 оба транзистора закрыты и батарея GB1 разряжается через резистор R7. Переменным резистором R1 изменяют в небольших пределах соотношение длительностей открытого и закрытого состояний транзистора VT2, т. е. скважность импульсов асимметричного тока.

Микросхему К561ЛН2 можно заменить на К561ЛА7, К176ЛА7; транзистор VT1 - любой из серий КТ203, КТ361, КТ501, VT2 - любой из серий КТ815, КТ817, КТ3117, КТ608. Диоды VD1,VD2 - Д311, КД503, КД509, Д223 с любыми буквами.

Налаживание устройства состоит в подборке резисторов R6 и R7 по требуемым значениям зарядного и разрядного токов. Напряжение питания выбирают в пределах бВ в соответствии с общим напряжением заряжаемых элементов. Зарядный ток выбирают исходя из (6...10)-часового режима заряда. Скважность импульсов


тока подбирают экспериментально - в зависимости от типа заряжаемых элементов.

Понадобилась мне зарядка для аккумуляторной Кроны, схемка нашлась по этому адресу: http:///index. php? act=categories&CO...le&article=2573
Но мало того что описание схемы на нерусском, так еще после сборки схема незаработала. Оказалась вкралась опечатка в схеме, 3 и 6 выводы таймера попутаны. Внизу исправленная схема и печатка к ней:
http:///index. php? act=ST&f=59&t=17078&st=0#entry339479


https://pandia.ru/text/77/496/images/image013_229.gif" width="684" height="362">
Схема предназначеня для установки в промышленное зарядное устройство для аккумуляторов 7Д-0,115 (так у меня на нем написано) или "Ника". Не стоит применять его для восстановления батареек "Крона", т. к.

последние могут "потечь" и вывести из строя само устройство или привести к пожару.

обкатать". Для этого берут конденсатор как можно большей емкости (я использовал 150.000mkF), параллельно ему включают сопротивление 3-10 кОм и подключают вместо аккумулятора, соблюдая полярность. Получается иммитация аккумулятора очень маленькой емкости. Светодиод начинает периодически загораться и тухнуть. В таком виде желательно оставить схему на 1-2 часа. После окончания "обкатки" сопротивление, включенное параллельно конденсатору, удаляют и подключают на его место вольтметр (лучше цифровой). Подстроечным резистором R2 устанавливают порог выключения светодиода 10,5 В. Если вы хотите, чтобы по окончании заряда емкость аккумулятора поддерживалать около 100% необходимо уменьшить номинал резистора R3 до 33 кОм.

Детали: конденсатор С1 на напряжение не менее 250 В, лучше 400 В; стабилитрон на напрядение 12-15 В; микросхему К561ЛН2 можно заменить на 561ЛЕ5, 561ЛА7, соответственно изменив схему включения; конденсатор С2 на напряжение 16В (при уменьшении его емкости до 470 мкФ желательно последовательно с C1 включить сопротивление на 100-200 Ом для ограничения броска тока в момент включения устройства в сеть); транзистор КП303 с начальним током стока 10мА (буквы: Г, Д, Е) можно использовать любой с аналогичными параметрами; светодиод - любой из серии АЛ307; резисторы 0,125 Вт.

В микросхеме 3 инвертора остаются неиспользуемыми. Это дает возможность собрать на них второй канал и установить все это в "китайское" зарядное устройство. Можно также использовать их для звуковой или световой индикации режимов работы.

Можно дополнить схему для "тренировки" и восстановления старых аккумуляторов рис.2. В этом случае резистор R3 (рис.1) необходимо заменить на подстроечный с номиналом не менее 200 кОм, для установки нижнего предела напряжения срабатывания схемы (7В). Здесь с помощью S1 выбирают режим работы заряд/тренировка (на схеме показан в режиме заряд). Этот режим особенно полезен для NiCd аккумуляторов как находящихся длительное время в эксплуатации, так и абсолитно новых (3-4 цикла тренировки позволяют им выйти на режим полной емкости). Для примера приведу опробирование этого режима с аккумулятором 7Д-0,125Д (год выпуска - 1991, год ввода в эксплуатацию - 1992, установлен в мультиметре "МР-12" с током потребления 1-2мА).

* - емкость, измерянная до восстановления. Измерялась при токе равном 0,5C (т. е. завышенная процентов на 20, что я не считаю криминалом, всвязи с низким током потребления мультиметра, при котором емкость окажется еще больше).
** - последний цикл восстановления проведен методом "глубокого" разряда и 3 циклами обычной тренировки. На этом я и закончил мучения этого аккумулятора.
Источник: shems.

Слаботочные зарядные устройства с бестрансформаторным сетевым питанием

http:///document4979.html !!!

Зарядное устройство с сетевым питанием (рис. 15.1) предназначено для подзаряда элементов СЦ-21 током 2.5...3 мА (время зарядачасов) или элементов РЦ-31 токоммА .
Максимальное значение зарядного тока определяется емкостью гасящего конденсатора С1 и составляет 16 мА, его можно уменьшить резистором R1. Как и остальные подобные устройства с сетевым питанием, это зарядное устройство не изолировано от питающей сети, поэтому при работе с ним требуется повышенная осторожность.


Рис. 15.1. Схема зарядного устройства с сетевым питанием


Рис. 15.2. Схема выпрямителя для подзаряда элементов и батарей

Схема, предложенная Е. Гумелей (рис. 15.2), не имеет понижающего трансформатора и питается от сети переменного тока 220 В . Конденсаторы С1 и С2 должны выдерживать напряжение Они могут быть заменены резисторами с суммарным сопротивлением 24 кОм и мощностью не менее 2 Вт. Схема предназначается для подзарядки батарей, частично разряженных, но не более чем до напряжения 1,1 6 на один элемент, так как подзаряд с помощью такой схемы предусматривает
восстановление только положительного электрода путем окисления МпООН в МпО2. Выпрямитель может быть использован для подзаряда элементов и батарей типа КБС, «Крона» и др. Выход устройства не изолирован от питающей сети.
Выпрямитель предназначен для заряда герметичных дисковых и цилиндрических никель-кадмиевых аккумуляторов током 12, 25 и 50 мА (рис. 15.3) .
Изменением емкости гасящего конденсатора можно устанавливать максимальный ток на выходе выпрямителя. Увеличение емкости конденсатора в целое число раз обеспечивает пропорциональное увеличение тока. В выпрямителе не допускается применять электролитические конденсаторы, поскольку они не работают в цепях переменного тока.

Рис. 15.3. Схема выпрямителя для заряда никель-кадмиевых аккумуляторов

Рис. 15.4. Схема бестрансформаторного зарядного устройства

Зарядное устройство (рис. 15.4) содержит выпрямитель с гасящим конденсатором С1 . Стабильный зарядный ток через элементы GB1, GB2 обеспечивает лампа накаливания EL1. При напряжении заряда 4...20 6 зарядный ток поддерживается неизменным на уровне 35 мА. Следует отметить, что для обеспечения такого зарядного тока емкость гасящего конденсатора не должна превышать 0,5 мкФ.
Большим недостатком схемы является ее непосредственная связь с электрической сетью. При работе с устройством необходимо полностью исключить возможность прикосновения к элементам схемы, особенно при смене заряжаемых элементов.
Для заряда батареи аккумуляторного фонарика (три элемента по 1,2... 1,4 6) предназначено устройство (рис. 15.5), которое позволяет исключить их перезаряд .

Рис. 15.5. Схема зарядного устройства для батареи аккумуляторного фонарика с защитой от перезаряда

Стабилитрон VD5 типа КС156 ограничивает предельное напряжение на батарее. Светодиод HL1 гасит на себе избыток напряжения и одновременно служит индикатором конца зарядки - начинает неярко светиться.
Разделительный конденсатор С1 типа К73-17 при емкости 0,47 мкФ обеспечивает зарядный ток 30...35 мА; при емкости 0,22мкФ -до 15 мА.
В качестве диодов VD1 - VD4 можно использовать более доступные элементы, например, типа КД102Б.
Зарядное устройство-автомат (рис. 15.6) прекращает процесс заряда аккумулятора по достижении на его выводах напряжения 9,45 Б .
Устройство состоит из однополупериодного выпрямителя на диоде VD1, электронного ключа на транзисторе VT1 и диоде VD3 и порогового устройства на тиристоре VS1.
Пока аккумулятор заряжается, и напряжение на нем ниже номинального, тиристор VS1 закрыт. Как только напряжение на аккумуляторе возрастает до номинального, тиристор открывается. Зажигается сигнальная лампа и одновременно закрывается транзистор VT1. Зарядка аккумулятора прекращается. Порог срабатывания автомата зависит от сопротивления резистора R4.

Рис. 15.6. Схема автоматического зарядного устройства для аккумулятора 7Д-01

Налаживают устройство при подключенном аккумуляторе и контрольном вольтметре постоянного тока. При напряжении 9,45 В на выводах аккумулятора подбором резистора R4 добиваются зажигания сигнальной лампы.
Резисторы R1 и R2, которые греются в процессе работы, можно заменить последовательной цепочкой из гасящего конденсатора емкостью 0,22 (0,25) мкФ на 300 В и резистора сопротивлениемОм. Конденсатор включают вместо резистора R1, а между точкой его соединения с диодом VD1 и анодом стабилитрона VD2 включают дополнительный диод Д226Б (анодом к аноду стабилитрона).
Бестрансформаторные источники питания с гасящим конденсатором позволяют обеспечить достаточно высокую мощность и напряжение в нагрузке, однако они не лишены одного, но очень существенного недостатка: их выход электрически не изолирован от питающей сети, а потому работа с такими устройствами сопряжена с повышенной опасностью.
Довольно оригинально разрешить проблему создания бестрансформаторного источника питания с применением гасящего
конденсатора удалось , который использовал оптоэлектронный преобразователь напряжения для развязки входных и выходных цепей (рис. 15.7).

Рис. 15.7. Схема оптоэлектронного преобразователя с сетевым питанием

Преобразователь может быть использован для питания электронно-механических или электронно-кварцевых часов, быть дублером их штатного источника питания - батареи или аккумулятора, а также использоваться для их подзарядки. Четырехэле-ментный оптронный преобразователь напряжения на аналогах оптронов (парах АЛ107Б-ФД256) способен обеспечить выходное напряжение порядка 0,5 В при токе нагрузки до 0,4...0,5 мА. Для этого емкость конденсатора С1, рассчитанного на напряжение не ниже 400 В, должна быть не менее 0,75... 1,0 мкФ.
Аналогом первичной обмотки трансформатора является цепочка последовательно включенных светодиодов оптронных пар. В качестве аналога вторичной (выходной) обмотки трансформатора выступает цепочка последовательно включенных фотодиодов. Они работают в режиме генерации фото-ЭДС. Стоит отметить, что КПД устройства невелик, поскольку КПД оптронной пары редко достигает 1%. Повысить выходное напряжение преобразователя можно за счет наращивания числа оптронных пар в цепочке. Увеличить выходной ток устройства можно за счет параллельного включения нескольких цепочек оптронов.
Фотодиоды подключены параллельно накопительному коненсатору С2. На первый взгляд может показаться, что конденса-ор разрядится на эти фотодиоды, поскольку они подключены в онденсатору в «прямом» направлении. Однако это не так: для ого чтобы через фотодиоды протекал заметный ток, необходимо, тобы падение напряжения на его полупроводниковом переходе оставляло доли вольта. Легко заметить, что для цепочки из ескольких последовательно включенных диодов для этого необ-одимо напряжение, также в несколько раз большее, т. е. уже не-колько вольт.
Взамен диодных оптронов могут быть использованы дис-ретные элементы: обычные светодиоды и фотодиоды.
Дополнив устройство, питаемое от батареи, например при-мник «Селга», разъемом для соединения с сетевым ЗУ и пере-лючателем SA1 «Радиоприем - Заряд», аккумулятор 7Д~0,125Д южно подзаряжать, не извлекая из корпуса приемника .
Сетевое ЗУ промышленного производства было доработа-о Н. Ващенко (рис. 15.8) с использованием резисторов R1, R2 и, иода VD1.


Рис. 15.8. Схема зарядного устройства с сетевым питанием

Когда доработанное ЗУ соединяют с приемником, зеленое вечение светодиода HL2 (переключатель SA1 - - в положении Заряд») указывает, что цепь заряда исправна, а при подключе-ии ЗУ к сети красное свечение дополнительного светодиода HL1 видетельствует, что аккумуляторная батарея заряжается. Когда се есть зеленое свечение, а красного нет, - напряжение в сети тсутствует. Такой режим заряда батареи 7Д-0,125Д крайне неже-ателен, но там где он неизбежен - следует предусмотреть защиту от перезаряда. Для этого параллельно батарее включают стабилитрон VD2 с напряжением стабилизации 9,9 6 при токе 10мА. Подзаряжать батарею нужно через каждые 3...4 ч работы приемника (при средней громкости). Продолжительность заряда батареи - в 2...3 раза больше.
Резистор R4 подбирают по минимальной яркости свечения светодиода HL2. Вместо Д810 допустимо применить стабилитроны Д814Б или Д814Г, их аналоги, а также цепочки КС133А+КС162А или 2хКС147А, подбирая их на указанное напряжение.
Для автоматической зарядки аккумуляторов резервного питания или освещения во время отключения сети 220 6 предназначено устройство (рис. 15.9) , которое позволяет поддерживать аккумуляторы постоянно заряженными.

Рис. 15.9. Схема автоматического зарядного устройства

При наличии напряжения в сети 220 В устройство постоянно подключено параллельно аккумулятору и представляет собой ключевой стабилизатор напряжения со стабильным током на выходе. Ток заряда (I3) зависит от емкости конденсатора С1 и при 10 мкФ равен 0,7 А. Ток выбирается из условия: I3 (24 часа) > 2lntn, где ln - ток потребления, A; tn - количество часов в сутки работы потребителя от аккумуляторов.
Если ток заряда из этого условия больше, чем максимальный зарядный для конкретного аккумулятора, его нужно заменить на аккумулятор большей емкости.
При токе заряда больше 1 А диоды VD1 - VD4 следует заменить на более мощные, a VD5 и VS1 установить на теплоот-воды и пропорционально скорректировать сопротивление резистора R4.
Если скорость переключения на резервное питание не актуальна, например, при освещении комнаты, реле можно исключить, а на выходе установить переключатель.
Настройка устройства сводится к установке конечного напряжения заряда на аккумуляторе резистором R6 таким образом, чтобы на протяжении месяца не приходилось доливать воду в электролит, а его плотность соответствовала степени заряженно-сти не менее 70% емкости. Это напряжение можно определить для конкретного аккумулятора следующим образом. Заряжают аккумулятор до полной емкости любым способом, дают ему постоять около 1 ч для выравнивания потенциала на электродах. После этого замеряют напряжение на клеммах без нагрузки. Это и есть напряжение, которое устанавливают резистором R6 с отключенным от устройства аккумулятором. Подключают аккумулятор к устройству, и оно готово к работе.
Конденсатор С1 бумажный или металлобумажный на напряжение не ниже 400 В. Реле К1 - РПУ, МКУ-48 или аналогичное на 220 В. Светодиод HL1 индицирует окончание заряда, HL2 - наличие тока заряда.

Многие аккумуляторы не допускают разрядку ниже определенного значения: стоит перейти некоторый предел, и в аккумуляторе произойдут необратимые процессы, после которых источник питания станет непригоден для дальнейшей эксплуатации. В этой связи очень актуальным является вопрос защиты элементов питания от слишком глубокой разрядки.

Схема одного из устройств, предназначенных для защиты аккумуляторов от разряда ниже допустимой величины , показана на рис. 14.13. Для контроля напряжения питания использован обычный стабилитрон VD1 или заменяющий его лавинный транзистор VT3.

набор" зарядных токов, которые не зависят от колебаний входного напряжения, а также сопротивления заряжаемого элемента . На нагрузке транзистора VT1 напряжение стабилизировано. С движков группы потенциометров, включенных параллельно и питаемых стабильным напряжением, снимается определенная доля напряжения и поступает на базы транзисторов VT2 – VT5. При помощи резисторов R3, R5, R7, R9 задается величина предельного тока через транзисторы и, соответственно, через заряжаемые элементы.

набором" стабильных зарядных токов

Схема (рис. 14.15) предназначена для раздельного заряда до шести химических источников тока . Одновременно можно заряжать полностью разряженные аккумуляторы и те, которые необходимо подзарядить после хранения. Последние никогда не перезарядятся, если прекратить заряд одновременно с теми, которым необходимо полностью восстановить емкость. Вследствие технологического разброса при производстве аккумуляторов, каждый из них отдает различную емкость даже при соединении их в батарею, особенно это относится к длительно эксплуатируемым аккумуляторам.

Аккумулятор, подключенный к гнезду XS1, заряжается эмиттерным током транзистора VT1, пропорциональным току базы, который уменьшается по экспоненциальному закону. Таким образом, аккумулятор автоматически заряжается оптимальным образом.

Опорное напряжение формируется аналогом низковольтного стабилитрона на элементах VT7, VT8, VD1, VD2. Диоды VD1, VD2 подбирают из комбинации кремниевый – германиевый или оба германиевых. Критерий правильности подбора – напряжение 1.35… 1.4 В на эмиттере транзистора VT1. Резистор в цепи базы транзистора определяет начальный ток заряда. Само зарядное устройство в процессе работы постоянного наблюдения не требует.

Слаботочные зарядные устройства

https://pandia.ru/text/77/496/images/image027_51.jpg" alt="http://" width="300" height="158 src=">
Рис. 14.16 . Схема контроля окончания заряда

Основой ее служит компаратор DA1. На неинвертирующий вход поступает напряжение 1.35 Б с движка подстроенного резистора R1. Через контакты кнопки SB1 на инвертирующий вход подают напряжение с контролируемого аккумулятора. Если при фиксации кнопки SB1 в нажатом положении светодиод HL1 начинает светиться, то аккумулятор" зарядился до номинального напряжения 1.35 В. Далее контролируют напряжение на следующем аккумуляторе и т. д.

Автоматически отключающееся зарядное устройство на основе тиристорного ключа (рис. 14.17) состоит из выпрямителя и источника стабилизированного опорного напряжения. Источник опорного напряжения выполнен на стабилитроне VD6. Через резистивный делитель (потенциометр R2) стабилизированное напряжение подается на базу транзистора VT2. К эмиттеру этого транзистора подключен анодом диод VD7, соединенный своим катодом с заряжаемой батареей. Как только напряжение на батарее повысится сверх заданного уровня, транзисторы VT1 и VT2, а также и тиристор, через который протекает зарядный ток, отключатся, прервав процесс заряда.

Стоит обратить внимание, что тиристор питается импульсами выпрямленного напряжения от диодного моста VD1 – VD4. Конденсатор фильтра С1, транзисторная схема и стабилизатор напряжения подключены к выпрямителю через диод VD5. Лампа накаливания индицирует процесс заряда и, при необходимости, ограничивает ток короткого замыкания в аварийной ситуации.

В зарядных устройствах также может использоваться схема стабилизатора тока. На рис. 14.18 показана схема зарядного устройства на основе микросхемы LM117 с ограничением зарядного тока до 50 мА . Величину этого тока легко изменить с помощью резистора R1.

https://pandia.ru/text/77/496/images/image029_50.jpg" alt="http://" width="250" height="95 src=">
Рис. 14.18 . Схема зарядного устройства на основе стабилизатора тока

https://pandia.ru/text/77/496/images/image031_42.jpg" alt="http://" width="300" height="191 src=">
Рис. 14.20 . Схема зарядного устройства с ограничением зарядного тока

https://pandia.ru/text/77/496/images/image033_39.jpg" alt="http://" width="400" height="175 src=">
Рис. 14.22 . Схема зарядного устройства со стабилизацией тока

В устройстве можно применить микросхемы типов SD1083, SD1084, ND1083 или ND1084.

Схема зарубежного зарядного устройства "ВС-100" приведена на рис. 14.23. Устройство позволяет одновременно заряжать 3 пары Ni-Cd аккумуляторов. В процессе заряда светится светодиод HL1, затем светодиод HL1 начинает периодически вспыхивать. Постоянное свечение светодиодов HL1 и HL2 свидетельствует об окончании процесса заряда.

Зарядное устройство "ВС-100" не лишено недостатков. Заряд наиболее распространенных аккумуляторов емкостью 450 мА-ч током 160… 180 мА оказывается недопустимым. Ускоренный режим заряда выдерживают не все аккумуляторы, поэтому О. Долговым было разработано более совершенное зарядное устройство, схема которого приведена на следующем рисунке (рис. 14.24).

Сетевое напряжение, пониженное трансформатором Т1 до 10 В, выпрямляется диодами VD1 – VD4 и через токоограничивающий резистор R2 и составной транзистор VT2, VT3 поступает на заряжаемую батарею GB1. Светодиод HL1 индицирует наличие зарядного тока.

ВС-100" для Ni-Cd аккумуляторов

https://pandia.ru/text/77/496/images/image036_31.jpg" alt="http://" width="400" height="180 src=">
Рис. 14.25 . Схема стабилизатора тока для заряда Ni-Cd аккумуляторов

посаженной" батареи. Как показывает практика, для подзарядки аккумулятора в процессе длительного хранения требуется небольшой ток, около 0.1…0.3 А (для 6СТ-55). Если хранящийся аккумулятор периодически, примерно раз в месяц, ставить на такую подзарядку на 2…3 дня, то можно быть уверенным в том, что он в любой момент будет готов к эксплуатации даже через несколько лет такого хранения.

На рис. 16.6 показана схема "подзаряжающего" устройства – бестрансформаторного источника питания, выдающего постоянное напряжение 14,4 В при токе до 0.3 А . Источник построен по схеме параметрического стабилизатора с емкостным балластным сопротивлением. Напряжение от сети поступает на мостовой выпрямитель VD1 – VD4 через конденсатор С1. На выходе выпрямителя включен стабилитрон VD5 на 14,4 В. Конденсатор С1 ограничивает ток до величины не более 0.3 А. Конденсатор С2 сглаживает пульсации выпрямленного напряжения. Аккумуляторная батарея подключается параллельно стабилитрону VD5.

мягкий" заряд малым током. Величина этого тока находится в обратной зависимости от напряжения на аккумуляторе, но в любом случае даже при коротком замыкании не превышает 0.3 А. При заряде батареи до напряжения 14,4 В процесс прекращается.

При эксплуатации устройства нужно соблюдать правила безопасности при работе с электроустановками.

Простое зарядное устройство для заряда автомобильных или тракторных аккумуляторов (рис. 16.7) выгодно отличается повышенной безопасностью в эксплуатации по сравнению с бестрансформаторными аналогами. Однако его трансформатор довольно сложен: для регулировки зарядного тока он имеет множество отводов.

Регулировка тока заряда производится галетным переключателем S1 за счет изменения числа витков первичной обмотки. Выпрямитель обеспечивает ток заряда 10… 15 А.

Портативное устройство, предназначенное для зарядки литиевых (ионно-литиевых) батарей пульсирующим током, показано на рис. 16.9 . Автоматизированное зарядное устройство выполнено на основе специализированной микросхемы фирмы MAXIM – MAX1679. Питание зарядное устройство получает от сетевого адаптера, способного выдавать напряжение 6 В при токе до 800 мА. Для защиты схемы от неправильного подключения предназначен диод VD1 – диод Шотки, – рассчитанный на прямой ток 1 А при максимальном обратном напряжении 30 В. Светодиод HL1 предназначен для индикации работы зарядного устройства.

https://pandia.ru/text/77/496/images/image040_25.jpg" alt="http://" width="400" height="279 src=">
Рис. 16.9 . Схема зарядного устройства для ионно-литиевых батарей на основе микросхемы МАХ1679

https://pandia.ru/text/77/496/images/image042_66.gif" width="402 height=268" height="268">

Рис. 1. Зарядка аккумуляторной батареи ассиметричным током. Схема принципиальная электрическая

На Рис. 1 представлена схема заряда аккумулятора ассиметричным током рассчитанная на работу с 12 В аккумуляторной батареей и обеспечивает импульсный зарядный ток 5 А и разрядный – 0,5 А. Она представляет собой регулятор тока, собранный на транзисторах VT1…VT3. Питается устройство переменным током напряжением 22 В (амплитудное значение 30 В). При номинальном зарядном токе напряжение на заряженной аккумуляторной батарее составляет 13…15 В (среднее напряжение 14 В).

За время одного периода переменного напряжения формируется один импульс зарядного тока (угол отсечки а = 60ْ). В промежутке между зарядными импульсами формируется разрядный импульс через резистор R3, сопротивление которого подбирается по необходимой амплитуде разрядного тока. Необходимо учитывать, что суммарный ток зарядного устройства должен составлять 1,1 от тока заряда аккумулятора, так как при заряде резистор R3 подключен параллельно батарее и через него течёт ток. При использовании аналогового амперметра, он будет показывать около одной трети от амплитуды импульса зарядного тока. Схема защищена от короткого замыкания выхода.

Заряд аккумулятора ведут до тех пор, пока наступит обильное газовыделение (кипение) во всех банках, а напряжение и плотность электролита будут постоянными в течение двух часов подряд. Это является признаком окончания заряда. Затем следует произвести уравнивание плотности электролита во всех банках и продолжить заряд в течение примерно 30 минут для лучшего перемешивания электролита.

Во время заряда аккумуляторной батареи следует следить за температурой электролита и не допускать её превышения: 45ْ С в умеренных и холодных зонах и 50ْ С в тёплых и жарких влажных зонах климата.

Так как при заряде кислотных аккумуляторов выделяется водород , следует проводить заряд аккумуляторов в хорошо проветриваемых помещениях, при этом не следует курить и пользоваться источниками открытого огня. Образовавшаяся гремучая смесь обладает большой разрушительной силой.

(Выделяющийся при кипении электролита газ переносит капельки кислоты, которые, попадая в органы дыхания, на слизистую оболочку глаз, кожу, разъедают их, так что зарядку аккумуляторных батарей лучше производить на открытом воздухе вне помещения – UA 9 LAQ ).

Литература: 1. Батарейки и Аккумуляторы. Серия “Информационное издание”.

Выпуск 1. “Наука и Техника”, Киев, 1995 г, стр. 30…31.

2. Деордиев и уход за ними. Техника, Киев, 1985 г

P . S . Тема актуальна для всех, кто пользуется автономным питанием повышенной мощности, для передвижных (мобильных) радиостанций, участников радиоэкспедиций и “Полевых дней”. Транзисторы VT2 и VT3 лучше установить на теплоотводы с достаточной площадью поверхности. Мощные низкоомные резисторы лучше изготовить из медной проволоки, намотав её на каркас из негорючего тугоплавкого материала. Возможен вариант изготовления таких резисторов из провода высокого сопротивления или применение мощных низковольтных ламп накаливания. Поскольку у последних сопротивление - величина переменная, то они, с одной стороны, могут являться причиной нестабильности порога срабатывания защиты, с другой, при последовательном включении, будут являться (дополнительными) стабилизаторами тока (здесь: тока зарядки).

Для герметизированных аккумуляторов с гелевым электролитом, наряду с циклическим щадящим режимом зарядки током постоянного значения, используют режим плавающего тока зарядки при постоянном напряжении, при этом, необходимо устанавливать напряжение 2,23…2,3 В в расчёте на элемент батареи, что в пересчёте, например, на 12-вольтовую аккумуляторную батарею составит: 13,38…13,8 В. При изменении температуры от минус 30ْ С до плюс 50ْ С напряжение заряда может изменяться от 2,15 до 2,55 В на элемент. При температуре 20ْ С при использовании аккумуляторной батареи в буферном режиме, напряжение на ней должно находиться в пределах 2,3…2,35 В на элемент. Колебание напряжения (например, при изменении нагрузки на комбинированный источник питания с “буферной” батареей) не должно превышать плюс/минус 30 мВ на элемент. При зарядном напряжении более 2, 4 В на элемент следует применять меры для ограничения тока заряда до максимум 0,5 А на каждый ампер – час ёмкости.

При использовании батареи в буфере со стабилизатором напряжения, напряжение на выходе последнего следует выбирать таким образом, чтобы оно не превышало напряжения свежезаряженной батареи, например, 14,2 В для 12 – вольтовой с учётом падения напряжения на разделительном (между стабилизатором и батареей) диоде, который следует выбирать с запасом на максимальный ток нагрузки и зарядный ток аккумуляторной батареи (если не исключена возможность подключения разряженной батареи).

Диод должен иметь максимально возможное обратное и минимально возможное прямое сопротивления для обеспечения, соответственно, минимальной разрядки батареи через отключенный от сети стабилизатор и минимального падения напряжения зарядки при смене нагрузки как указано выше. Хорошо здесь подходят мощные диоды с барьером Шоттки.

Изложенные выше принципы, в большинстве своём, приемлемы и для миниатюрных некислотных аккумуляторов, но там другие напряжения и токи.

Несколько слов о регенерации гальванических элементов.

Рис. 2. Зарядка гальванических элементов ассиметричным током. Схема принципиальная электрическая.

В [ 1 ] приведена простая схема зарядки гальванических элементов ассиметричным током, когда ко вторичной обмотке понижающего трансформатора подключаются два диода по схеме однополупериодного выпрямления положительного и отрицательного напряжения. Последовательно с одним диодом включен двухваттный резистор сопротивлением 13 Ом (для прямого тока зарядки), последовательно с другим, включенным в противоположной полярности, – такой же резистор, но сопротивлением 100 Ом, для обеспечения разрядного тока. Обе цепи подключены к гальваническому элементу или батарее из них. (Рис. 2). Величиной напряжения, подаваемого на вход выпрямителей или величиной номиналов резисторов в имеющейся пропорции можно синхронно изменять ток заряда и разряда гальванических источников тока. Соотношение зарядного тока к разрядному здесь 10:1, отношение длительности импульсов 1:2. Как указано в [ 1 ] устройство позволяет активизировать батарейки от часов и старые малогабаритные аккумуляторы. Причём заряд первых должен осуществляться током не более 2 мА и длиться не более 5 часов.

Я, в своё время, применял “плавающий” способ зарядки гальванических элементов, который позволил мне эксплуатировать пару лет три 9 – вольтовых комплекта элементов 316 “Прима” и, в общей сложности 4 года, когда из трёх комплектов “дожили” элементы сведённые в один. Элементы были взяты новыми: буквально через две недели после выпуска оказались у меня, был проведён предварительный отбор на идентичность и продуман порядок эксплуатации. Выбранный мной режим зарядки обеспечивал зарядный ток в течении 12…15 часов от стабилизированного блока питания с выходным напряжением 9,6 В, т. е., 1,51 В на элемент (можно до 1,52…1,53 В). Такой режим не даёт элементам нагреваться при зарядке, а это значит, что элементы долго не высыхают. Эксплуатация батареи производилась в СВ-радиостанции с выходной мощностью до 1 Вт (ВИС-Р). Элементы в разряженном состоянии не хранились, эксплуатация проводилась в буфере (стабилизатор плюс батарея) в стационарных условиях и в походных, после возвращения из которых, батарея (внутри станции) снова возвращалась на место: к стабилизатору.