Мощный генератор синуса схема. Генератор синуса, синусоидальных колебаний, сигнала, напряжения. Схема. Схемы и ПП

Для генерации синусоидальных колебаний необходимо, чтобы условия возникновения автоколебаний – баланс амплитуд и баланс фаз – выполнялись в узкой полосе частот. Поэтому в схеме генератора либо усилитель, либо цепь обратной связи должны обладать явно выраженными частотными свойствами. В частности, полосовые фильтры с высокой добротностью являются потенциальными генераторами. Наиболее часто используются два типа генераторов – с колебательными контурами (LC -генераторы) и с резистивно-емкостными цепями (RC -генераторы).

LC-генераторы используют для получения синусоидальных колебаний фильтрующие свойства колебательного LC -контура, а компенсация потерь в контуре осуществляется при помощи усилителя.

Пример LC -генератора на операционном усилителе показан на рис. 5.16. Считая ОУ идеальным, определим условия генерации с использованием подхода, изложенного в п. 1.2 настоящего учебного пособия. Запишем уравнение по первому закону Кирхгофа для неинвертирующего входа ОУ:

(5.7)

В силу принципа мнимой земли

U 2 = U 1 R 2 /(R 1 + R 2).

Выражаем отсюда U 1 , подставляем в (5.7) и дифференцируем (5.7). Получаем:

Таким образом, процессы в генераторе описываются дифференциальным уравнением второго порядка с отрицательным коэффициентом при первой производной. Это уравнение неустойчивой системы: условие баланса амплитуд выполняется в любом случае. Однако уравнение (5.7) написано для идеальной индуктивности. В реальных колебательных контурах существуют потери, поэтому отношение R 1 /R 2 настраивается для получения устойчивого самовозбуждения. Напряжение на выходе ОУ будет отличаться от синусоидального, так как амплитуда колебаний растет вплоть до насыщения усилителя. Напряжение на колебательном контуре остается практически синусоидальным даже при глубоком насыщении, поэтому выходное напряжение обычно снимают с колебательного контура. Однако такой генератор обладает низкой нагрузочной способностью.

Генераторы на ОУ отличаются ограниченным диапазоном частот (в лучшем случае не более единиц МГц) из-за того, что частота единичного усиления ОУ сравнительно низка. В более высокочастотном диапазоне (до сотен МГц) применяются транзисторные LC - генераторы.

Наиболее распространены три типа схем транзисторных LC -автогенераторов: с трансформаторной обратной связью (схема Майсснера), индуктивная трехточка (схема Хартли) и емкостная трехточка (схема Колпитца). Для каждого типа известно множество вариантов, которые отличаются включением колебательного контура (в цепь эмиттера, в цепь коллектора, между эмиттером и базой), способами создания ПОС и схемой включения транзистора (с общим эмиттером, с общей базой). Во всех случаях граничная частота передачи по току применяемых транзисторов должна быть на порядок (рекомендуется не менее чем в 10 раз) выше генерируемой частоты.



На рис. 5.17, а показан пример генератора с трансформаторной ПОС.

Первичная обмотка трансформатора, имеющая индуктивность L , вместе с конденсатором С образует колебательный контур с резонансной частотой

Базовые и эмиттерное сопротивления R б1 , R б2 , R э задают режим усилительного каскада по постоянному току, конденсаторы C б и C э уменьшают сопротивление контура ОС. Условие баланса амплитуд обеспечивается при выполнении соотношения h 21э > w к /w б; практически данное неравенство выполняют с запасом в 1,5 – 3 раза. Условие баланса фаз обеспечивается согласованием включения обмоток.

Основным недостатком рассмотренного автогенератора с трансформаторной ПОС является то, что требуются две катушки индуктивности. Поэтому на практике часто используют схемы так называемых трехточек – автогенераторов, в которых колебательный контур соединен с остальной частью схемы в трех точках. При этом напряжение обратной связи снимается с части колебательного контура. Существует два типа трехточечных схем: индуктивная трехточка и емкостная трехточка. В схеме индуктивной трехточки (рис. 5.17, б ) использована автотрансформаторная ОС. Напряжение ОС снимается с верхней по схеме части катушки и подается в базу транзистора через разделительный конденсатор C ос, сопротивление которого на частоте колебаний незначительно. В схеме емкостной трехточки (рис. 5.17, в ) для передачи сигнала ОС использован емкостной делитель напряжения, что упрощает конструкцию катушки индуктивности. Особенностью данного варианта генератора является то, что транзистор включен по схеме с общей базой; подобное включение возможно и в схеме индуктивной трехточки.

LC -генераторы имеют сравнительно высокую стабильность частоты (типичная относительная нестабильность 10 -3 – 10 -4) и без дополнительных мер обеспечивают низкий уровень гармоник за счет фильтрующих свойств колебательного контура. Они эффективно работают в диапазоне частот от 100 кГц и выше, вплоть до сотен МГц. При более низких частотах падает добротность колебательного контура, и возрастают габариты индуктивных элементов. Перестройка частоты в колебательных контурах затруднена. Кроме того, моточные изделия низкотехнологичны в массовом производстве и с конструктивной точки зрения плохо сочетаются с современной микроэлектронной аппаратурой. Поэтому в диапазоне частот ниже 10 6 Гц широкое распространение получили генераторы с частотно-избирательными RC-цепями.

RC-генераторы характеризуются простотой и дешевизной, малыми массогабаритными показателями, способностью формировать колебания частотой от долей Гц. Их преимущества перед LC -генераторами проявляются тем ярче, чем ниже частота. Однако в отношении стабильности они несколько уступают LC -генераторам.

Наиболее широко известны два типа RC -генераторов: с фазосдвигающей цепочкой (рис. 5.18, а ) и с мостом Вина (рис. 5.18, б ).



В генераторе по схеме рис. 5.18, а фазосдвигающая цепочка имеет лестничную структуру. Каждое звено дает фазовый сдвиг менее 90°, поэтому для получения 180° необходимо минимум три звена. Частота автоколебаний, соответствующая углу сдвига фаз точно 180°, равна . На этой частоте модуль коэффициента передачи цепи ОС равен 1/29. Поэтому вместо ОУ может быть использован любой инвертирующий усилитель с коэффициентом усиления не менее 29, например, однотранзисторный усилительный каскад.

В генераторе с мостом Вина две цепи обратной связи. Цепь ПОС имеет комплексный коэффициент передачи

(5.8)

Как видно из (5.8), цепь ПОС дает нулевой фазовый сдвиг на частоте ω 0 = 1/RC , что в соответствии с условием баланса фаз и определяет частоту генерации. Модуль коэффициента передачи на этой частоте равен 1/3. Поэтому для выполнения условия баланса амплитуд цепь ООС, представляющая собой безынерционный делитель напряжения R1-R2 , должна иметь коэффициент передачи чуть меньше 1/3.

Общим недостатком всех RC -генераторов является то, что RC -цепи не обладают, подобно LC -контурам, выраженной частотной избирательностью. Поэтому условия генерации выполняются в широком диапазоне частот. Поскольку выполнить абсолютно точно условие баланса амплитуд К у К ос = 1 нельзя, то при незначительном снижении коэффициента петлевого усиления меньше единицы колебания будут затухать, а при незначительном превышении единицы амплитуда колебаний будет нарастать до тех пор, пока усилитель не выйдет в область насыщения, после чего форма колебаний будет сильно отличаться от синусоидальной. Подобное происходит и в LC -генераторе, но там высшие гармоники подавляются колебательным контуром. В RC -генераторах для обеспечения минимума искажений приходится вводить обратную связь по амплитуде колебаний.

Степень искажения синусоидального сигнала принято оценивать при помощи коэффициента нелинейных искажений или при помощи коэффициента гармоник .

Коэффициент нелинейных искажений К НИ равен отношению среднеквадратичной суммы высших гармоник выходного сигнала к среднеквадратичной сумме всех его гармоник. Коэффициент гармоник К Г равен отношению среднеквадратичной суммы высших гармоник выходного сигнала к напряжению первой гармоники:

где A i – амплитуда i -й гармоники.

Величины К НИ и К Г связаны соотношением:

При малых уровнях искажений оба показателя практически совпадают.

Искажения с К НИ более 3% ощутимы на слух, при 5% заметны на экране осциллографа.

Одним из приемов уменьшения нелинейных искажений в генераторе является охват усилителя дополнительной нелинейной ООС, например, с помощью стабили­тронов (показана пунктиром на рис. 5.18, б ). При увеличении амплитуды колебаний до уровня, при котором начинается пробой стабилитрона, происходит шунтирование резистора R 1, вследствие чего увеличивается глубина ООС, следовательно, уменьшается коэффициент усиления по напряжению, и амплитуда стабилизируется.

Другим решением является замена резистора R 2 элементом с сопротивлением, зависящим от температуры (полупроводниковый терморезистор с положительным ТКС или микромощная лампа накаливания). При увеличении амплитуды выходного напряжения возрастает рассеиваемая на этом элементе мощность, следовательно, возрастает сопротивление, что приводит к увеличению глубины ООС. Так как в данном варианте в схему не вносятся нелинейные элементы, то искажения формы очень малы (порядка 0,5%). Недостатком этого решения является зависимость амплитуды сигнала от температуры окружающей среды.

При создании прецизионных RC -генераторов (например, в измерительных генераторах синусоидальных сигналов) обеспечить жесткие требования к содержанию гармоник и к стабильности амплитуды можно путем введения отдельной цепи ООС по амплитуде (рис. 5.19). Принцип стабилизации основан на том, что полевой транзистор при малых напряжениях сток-исток ведет себя как управляемое сопротивление. Элементы VD2 , C1 , R3 образуют однополупериодный выпрямитель с фильтром, стабилитрон VD1 обеспечивает более высокую чувствительность к изменению амплитуды. В первоначальный момент после включения питания конденсатор C1 разряжен. Сопротивления R 1 , R 2 и сопротивление сток-исток R си полевого транзистора VT1 подобраны так, чтобы выполнялось условие
R 1 /(R 2 + R си) > 2, при этом в схеме после включения питания возникают возрастающие колебания. Когда амплитуда колебаний начинает превышать напряжение пробоя стабилитрона VD1 , на конденсаторе C1 появляется напряжение отрицательной полярности, что приводит к увеличению R си и как следствие к увеличению коэффициента передачи по цепи ООС. В результате амплитуда колебаний стабилизируется.

Рассмотренные способы построения RC -генераторов синусоидальных колебаний можно назвать традиционными. Используется также еще ряд способов – менее распространенных, но обладающих заслуживающими внимания особенностями.

В качестве частотно-избирательного звена может быть использован колебательный контур, в котором взамен индуктивности включен ее RC -аналог. На рис. 5.20, а показан пример такого аналога. Усилитель с конечным коэффициентом усиления К должен иметь бесконечное входное и нулевое выходное сопротивления. Анализ схемы показывает, что ее входное операторное сопротивление


При K = 1 Z вх (p ) = R (3 + 4pRC + p 2 R 2 C 2). Соответственно для синусоидального сигнала Z вх (j ω) = R (3 – ω 2 R 2 C 2) + j R 2 C . Отсюда видно, что относительно входных зажимов цепь ведет себя как последовательное соединение эквивалентного сопротивления R экв = R (3 – ω 2 R 2 C 2) и эквивалентной индуктивности L экв = 4R 2 C . На частоте

цепь представляет собой идеальную индуктивность, включив которую в колебательный контур, можно получить как узкополосный RC -фильтр, так и генератор синусоидальных колебаний.

Емкость контура С к определяется из выражения для частоты резонанса:

(5.10)

Из сравнения (5.9) и (5.10) получаем соотношение С = 12 С к.

В качестве усилителя с коэффициентом усиления К можно использовать эмиттерный повторитель на транзисторах (рис. 5.20, б ) либо ОУ в режиме повторителя напряжения (рис. 5.20, в ). Диапазон генерируемых частот – от 0,01 Гц до 15 МГц. Подбором сопротивления R 0 добиваются сочетания большой амплитуды и хорошей формы колебаний. В схеме рис. 5.20, б резистор R 1 необходим для задания точки покоя усилителя; для сохранения параметров времязадающей цепи необходимо выдержать соотношение R 1 R 2 /(R 1 + R 2) = R . Пара сопротивлений R э1 и R э2 , удовлетворяющие условию R э1 << R э2 , введены для небольшого увеличения коэффициента передачи составного повторителя, с тем,. чтобы возможно точнее установить К = 1. Рассмотренные генераторы характеризуются редкой для RC -схем стабильностью частоты: порядка 4∙10 –5 /°С.

Еще один способ получения синусоидального сигнала – формирование прямоугольного (еще лучше – треугольного) сигнала с последующим подавлением высших гармоник при помощи высокодобротного полосового RC -фильтра. Схема генератора отличается повышенной сложностью, зато позволяет добиться хорошей стабильности частоты и амплитуды, а также очень низкого содержания гармоник.

Кварцевые генераторы

При необходимости получить колебания с повышенной стабильностью частоты используются кварцевые генераторы. В них роль резонансного контура выполняет кварцевый резонатор – пластинка, кольцо или брусок, вырезанные определённым образом из кристалла кварца. Материал резонатора обладает хорошо выраженными пьезоэлектрическими свойствами, сущность которых заключается в поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект) и возникновении механических деформаций диэлектрика под действием электрического поля (обратный пьезоэлектрический эффект). При деформации кварцевой пластины на её поверхностях появляются электрические заряды, величина и знак которых зависят от величины и направления деформации. В свою очередь, появление на поверхности пластины электрических зарядов вызывает её механическую деформацию. В результате механические колебания кварцевой пластины сопровождаются синхронными с ними колебаниями электрического заряда на её поверхности и наоборот.

Кварцевые резонаторы имеют ряд существенных преимуществ перед колебательными контурами:

Намного большее значение добротности (10 4 – 10 5) эквивалентного колебательного контура;

Малые размеры (вплоть до долей мм);

Большая температурная стабильность;

Лучшая технологичность, связанная с тем, что резонатор является законченным монолитным изделием массового изготовления;

Большая долговечность.

Недостаток кварцевых генераторов – невозможность перестройки частоты в широких пределах.

Характерный диапазон частот кварцевых генераторов составляет от 10 кГц до 300 МГц. Типичная относительная нестабильность частоты генерируемых колебаний порядка 10 -6 , при принятии дополнительных мер по термостабилизации – до 10 –9 .

Кварцевые генераторы широко применяются в современной радиоэлектронике. Они используются в аппаратуре радиосвязи, в технике передачи данных, в качестве генераторов тактовых импульсов в цифровых устройствах, для точного измерения частоты и временных интервалов.

Массовое применение находят кварцевые генераторы для часовых схем. Резонансная частота часовых кварцевых резонаторов составляет 32768 = 2 15 Гц или 4194304 = 2 22 Гц. После деления в 15 - или 22-разрядном двоичном счетчике получаются импульсы с периодом 1 секунда.

Типичные параметры эквивалентной схемы замещения резонатора на частоту 4 МГц: L = 100 мГн; С = 0,015 пФ; R = 100 Ом; С 0 = 5 пФ.

Для определения параметров резонанса запишем полное сопротивление кварцевого резонатора, пренебрегая малым значением R :

(5.11)

Из выражения (5.11) видно, что существуют две резонансные частоты: частота последовательного резонанса f s , при которой Z = 0:

и частота параллельного резонанса f p , при которой Z = ¥:

Частота последовательного резонанса зависит только от строго определенных параметров резонатора, а частота параллельного резонанса – еще и от менее определенной величины С 0 , на которую влияет также емкость монтажа.

При необходимости можно подстраивать частоту кварцевого генератора в небольших пределах для достижения требуемого значения частоты. Для этого последовательно с кварцевым резонатором включают регулировочный конденсатор, емкость которого значительно больше емкости С . При этом изменяется только частота последовательного резонанса. При параллельном подключении регулировочного конденсатора меняет свое значение только частота параллельного резонанса. На генерируемую частоту влияет также эквивалентная емкость усилителя, которая, по сути дела, играет ту же роль, что и регулировочная емкость. Поэтому производители резонаторов практикуют настройку резонаторов при определенном значении нагрузочной емкости, которая указывается производителем в технической документации. Резонансная частота кварца, включенного в реальную электрическую цепь, будет изменяться в некоторых пределах при разных значениях емкости нагрузки.

Для формирования частот более 35–40 МГц часто используют колебания третьей, пятой и более высоких гармоник кварцевых резонаторов. Эта информация обычно отмечается в документации производителя. Чаще всего используется третья гармоника. Обычно генерация на неосновных гармониках менее устойчива и стабильна, чем на основной гармонике.



Кварцевые генераторы синусоидальных колебаний обычно строятся на основе типовых схем автогенераторов, в которых кварцевый резонатор включается вместо колебательного контура либо в цепь обратной связи. На рис. 5.22, а показан генератор по схеме индуктивной трехточки. Включение транзистора по схеме с общей базой обеспечивает малое сопротивление последовательной цепи, в которую встроен резонатор, что является необходимым условием его высокой добротности. Другой пример (рис. 5.22, б ) представляет собой генератор на полевом транзисторе по схеме емкостной трехточки, в котором индуктивность заменена кварцевым резонатором.

Импульсные кварцевые генераторы могут быть выполнены на базе мультивибраторов, в которых кварцевый резонатор включен на место времязадающей емкости. В современных цифровых устройствах чаще всего используются кварцевые генераторы на КМОП-инверторах (рис. 5.23).


В последние годы ряд фирм выпускает в виде готовых изделий кварцевые генераторы, содержащие в одном корпусе кварцевый резонатор и схему автогенератора. В этом случае гарантируется паспортная частота, отпадает необходимость расчета и настройки генератора, устройство имеет минимальные габариты.

Данная схема генератора низкой частоты гармонического синусоидального сигнала предназначена для настройки и ремонта усилителей звуковой частоты.

Генератор синусоидального сигнала совместно с милливольтметром, осциллографом или измерителя искажений создает ценный комплекс для настройки и ремонта всех каскадов усилителя звуковой частоты.

Основные характеристики:

  • Генерируемые частоты: 300 Гц, 1 кГц, 3 кГц.
  • Максимальное гармоническое искажение (THD): 0,11% — 1 кГц, 0,23% — 300Гц, 0,05% — 3 кГц
  • Ток потребления: 4,5 мА
  • Выбор выходного напряжения: 0 — 77,5 мВ, 0 — 0,775 В.

Схема синусоидального генератора достаточно проста и построена на двух транзисторах, которые обеспечивают высокую частоту и амплитудную стабильность. Конструкция генератора не требует никаких элементов стабилизации, таких как лампы, термисторы, или других специальных компонентов для ограничения амплитуды.

Каждая из трех частот (300 Гц, 1 кГц и 3 кГц) устанавливается переключателем S1. Амплитуда выходного сигнала может быть плавно изменена посредством переменного резистора R15 в двух диапазонах, которые устанавливаются переключателем S2. Доступные амплитудные диапазоны: 0 — 77,5 мВ (219,7 мВ от пика до пика) и 0 — 0,775 В (2,191 В от пика до пика).

На следующих рисунках приведена разводка печатной платы и расположение элементов на ней.

Перечень необходимых радиодеталей:

  • R1 — 12k
  • R2 — 2k2
  • R3, R4, R5, R15 — 1k переменный
  • R6, R7 — 1K5
  • R8 — 1k
  • R9 — 4k7
  • R10 — 3k3
  • R11 — 2k7
  • R12 — 300
  • R13 — 100k
  • С1 — 22n
  • С2 — 3u3
  • С3 — 330n
  • С4 — 56n
  • С5 — 330n
  • С6, С7 — 100n
  • D1, D2 — 1N4148
  • T1, T2, T3 — BC337
  • IO1 — 78L05

Если все детали установлены правильно и в монтаже нет никаких ошибок, генератор синусоидального сигнала должен заработать при первом же включении.

Напряжение питания схемы может быть в диапазоне 8-15 вольт. Чтобы поддержать стабильную амплитуду напряжения выходного сигнала, линия питания дополнительно стабилизирована микросхемой 78L05 и диодами D1, D2 в результате на выходе стабилизатора около 6,2 вольт.

Перед первым включением необходимо подключить выход генератора к частотомеру или осциллографу и с помощью подстроичных резисторов R3, R4 и R5 установить точную выходную частоту для каждого из диапазонов: 300 Гц, 1 кГц и 3 кГц. При необходимости, если не совсем удается подстроить частоты, то можно дополнительно подобрать сопротивления постоянных резисторов R6-R8.

http://pandatron.cz/?1134&sinusovy_generator_s_nizkym_zkreslenim

Генератор тестового сигнала с низким уровнем гармоник на мосте Вина

Когда нету под рукой качественного генератора синусоидального сигнала - как отлаживать усилитель, который ты разрабатываешь? Приходится обходиться подручными средствами.

В этой статье:

  • Высокая линейность при использовании бюджетного ОУ
  • Точная система АРУ, вносящая минимум искажений
  • Возможность работы от батарейки: минимум помех

Предыстория

В начале тысячелетия подались мы всем семейством на житьё-бытьё в дальние страны. Кое-что из моих электронных запасов последовало за нами, но, увы, далеко не всё. Итак оказался я один на один с большими собранными мною, но совсем ещё не отлаженными моноблоками, без осциллографа, без генератора сигналов, с огромным желанием завершить тот проект и слушать наконец музыку. Осциллограф удалось выпросить у друга во временное пользование. С генератором надо было срочно что-то изобретать самому. По тем порам я ещё не освоился с доступными здесь поставщиками компонентов. Из случайно оказавшихся под рукой операционников было несколько неудобоваримых продуктов древне-советской электронной промышленности, да LM324, выпаянный из сгоревшего компьютерного блока питания.
LM324 datasheet: National/TI , Fairchild , OnSemi ... Обожаю читать даташиты от National - у них обычно масса интересных примеров применения деталюх. OnSemi в данном случае тоже подсуетились. А вот "Цыганёнок" что-то обделил своих приверженцев 🙂

Классика жанра

Помоги автору!

В этой статье были показаны несколько несложных приёмов, позволяющих добиться весьма качественной генерации и усиления синусоидального сигнала , используя широко распространённый недорогой операционный усилитель и полевой транзистор с p-n переходом:

  • Ограничение диапазона автоматической регулировки уровня и уменьшение влияния нелинейности регулирующего элемента;
  • Смещение выходного каскада ОУ в линейный режим работы;
  • Выбор оптимального уровня виртуальной земли для работы от батарейного питания.

Всё ли было понятно? Нашел ли ты что-либо новое, оригинальное в этой статье? Мне будет приятно, если ты оставишь комментарий или задашь вопрос, а так же - поделишься статьёй с друзьями в социальной сети, "кликнув" соответствующую иконку ниже.

Дополнение (Октябрь 2017) Попалось на просторах Сети: http://www.linear.com/solutions/1623 . Сделал два вывода:

  1. Ничто не ново под Луной.
  2. Не гонялся бы ты, поп, за дешевизной! Взял бы нормальный ОУ тогда - и получил бы образцово низкий Кг.

This entry was posted in , by . Bookmark the .

Комментарии ВКонтакте

254 thoughts on “Генератор тестового сигнала с низким уровнем гармоник на мосте Вина

Этот сайт использует Akismet для борьбы со спамом.

Генераторами являются такие схемы, которые производят периодические колебания различных форм, например, прямоугольные, треугольные, пилообразные и синусоидальные. В генераторах обычно применяются различные активные компоненты, лампы или кварцевые резонаторы, а так же пассивные - резисторы, конденсаторы, индуктивности.

Существует два основных класса генераторов - релаксационные и гармонические. Релаксационные генераторы производят треугольные, пилообразные и другие несинусоидальные сигналы, и в этой статье они не рассматриваются. Синусоидальные генераторы состоят из усилителей со внешними компонентами, или же компоненты могут быть смонтированы на одном кристалле с усилителем. В этой статье рассматриваются генераторы гармонических сигналов, созданные на основе операционных усилителей.

Генераторы гармонического сигнала применяются в качестве образцовых или испытательных генераторов во многих схемах. В чистом синусоидальном сигнале присутствует только основная частота - в идеале в нём нет никаких других гармоник. Таким образом, подавая синусоидальный сигнал на вход какого-нибудь устройства, можно измерить уровень гармоник на его выходе, определив таким образом коэффициент нелинейных искажений. В релаксационных генераторах выходной сигнал формируется из синусоидального сигнала, который суммируется для формирования колебаний специальной формы.

2. Что такое генератор синусоидального сигнала

Генераторы на операционных усилителях являются нестабильными схемами - не в том смысле, что они случайно получились нестабильными - а наоборот, их специально конструируют так, что бы они оставались в нестабильном состоянии или в состоянии генерации. Генераторы бывают полезны для генерации стандартных сигналов, используемых как образцовые для применения в областях, связанных с аудио, в качестве функциональных генераторов, в цифровых системах и в системах связи.

Существуют два основных класса генераторов: синусоидальные и релаксационные. Синусоидальные состоят из усилителей с RC или LC цепями, с помощью которых можно менять частоту генерации, или кварцев с фиксированной частотой. Релаксационные генераторы генерируют колебания треугольной, пилообразной, прямоугольной, импульсной или экспоненциальной формы и здесь не рассматриваются.

Генераторы синусоидального сигнала работают без подачи на них внешнего сигнала. Вместо этого применяется комбинация положительной или отрицательной обратной связи, что бы перевести усилитель в нестабильное состояние, что приводит к цикличному изменению сигнала на выходе от минимального до максимального напряжения питания с постоянным периодом. Частота и амплитуда колебаний определяется набором активных и пассивных компонентов, подключённых к операционному усилителю.

Генераторы на операционных усилителях ограничены низкочастотным диапазоном частотного спектра, так как у них отсутствует широкая полоса пропускания, необходимая для достижения низкого фазового сдвига на высоких частотах. Операционные усилители с обратной связью по напряжению ограничены килогерцовым частотным диапазоном, так как доминирующий полюс при разомкнутой цепи обратной связи может находиться на достаточно низкой частоте, например 10 Гц. Новые операционные усилители с токовой связью имеют гораздо большую полосу пропускания, но их очень трудно использовать в генераторных схемах потому что они чувствительны к ёмкостям в цепях обратной связи. Генераторы с кварцевыми резонаторами используются для применения в высокочастотных схемах в диапазоне до сотен мГц.

3. Условия для возникновения генерации

Для демонстрации условий возникновения колебаний используется классическое изображение системы с отрицательной обратной связью. На рисунке 1 изображена блочная схема этой системы, где V IN - напряжение входного сигнала, V OUT - напряжение на выходе блока усилителя (A), β - сигнал, называемый коэффициентом обратной связи, который подаётся обратно на сумматор. E представляет ошибку, равную сумме коэффициента обратной связи и входного напряжения.

Рисунок 1. Классическая форма изображения системы с положительной или отрицательной обратной связью.

Соответствующие классические выражения для системы обратной связи выводятся следующим образом. Уравнение (1) является определяющим уравнением для выходного напряжения; уравнение (2) - для соответствующей ошибки:

V OUT = E x A (1)

E = V IN - βV OUT (2)

Выразив первое уравнение через E и подставив его во второе, получим

V OUT /A = V IN - βV OUT (3)

группируя V OUT в одной части равенства, получим

V IN = V OUT (1/A + β) (4)

Переставляя местами члены равенства, получим уравнение (5), классическую форму описания обратной связи:

V OUT /V IN = A / (1 + Aβ) (5)

Генераторы не требуют никакого внешнего сигнала для своей работы, вместо этого они используют некоторую часть выходного сигнала, подаваемого обратно на вход через цепь обратной связи.

Колебания в генераторах возникают от того, что системе обратной связи не удаётся найти стабильное состояние, потому что условие передаточной функции не может быть выполнено. Система становится неустойчивой, когда знаменатель в уравнении (5) обращается в нуль, т.е. когда 1 + Aβ = 0, или Aβ = -1. Ключом к созданию генератора является выполнение условия Aβ = -1. Это так называемый критерий Баркгаузена. Для удовлетворения этого критерия необходимо, что бы величина усиления цепи обратной связи совпадала по фазе с соответствующим фазовым сдвигом, равным 180°, на что указывает знак "минус". Эквивалентное выражение с использованием символики комплексной алгебры будет Aβ =1∠-180° для отрицательной системы обратной связи. Для положительной системы обратной связи выражение будет выглядеть как Aβ =1∠-0° и знак слагаемого Aβ в уравнении (5) будет отрицательным.

По мере того, как сдвиг фаз приближается к 180°, и |Aβ| --> 1, выходное напряжение теперь уже неустойчивой системы стремится к бесконечности, но оно, конечно же, ограничено конечными значениями из-за ограничения напряжения источника питания. Когда амплитуда выходного напряжения достигает величины какого-либо из питающих напряжений, то активные устройства в усилителях изменяют коэффициент усиления. Это приводит к тому, что величина A изменяется, и так же приводит к удалению Aβ от бесконечности и, таким образом траектория изменения напряжения в направлении бесконечности замедляется и в конце концов останавливается. На данном этапе может произойти одно из трёх событий:

I. нелинейности в режиме насыщения или отсечки приводят систему в устойчивое состояние и удерживают выходное напряжение вблизи напряжения источника питания.
II. Начальные изменения приводят систему в режим насыщение (или в режим отсечки) и система остаётся в этом состоянии долгое время, прежде чем она становится линейной и выходное напряжение начинает изменяться по направлению к противоположному источнику питания.
III. Система остаётся линейной и меняет направление изменения выходного напряжения в сторону к противоположному источнику питания.

Второй вариант даёт сильно искажённые колебания (как правило, почти прямоугольной формы), такие генераторы называют релаксационными. Третий вариант производит синусоидальный сигнал.

4. Сдвиг фаз в генераторах

В уравнении Aβ =1∠-180° фазовый сдвиг, равный 180°, вносят активные и пассивные компоненты. Как и любые правильно сконструированные схемы с обратной связью, генераторы зависят от фазового сдвига, вносимого пассивными компонентами, потому что этот фазовый сдвиг точный и почти без дрейфа. Фазовый сдвиг, вносимый активными компонентами сведён к минимуму, поскольку он зависит от температуры, имеет широкий начальный допуск, и зависит от типов активных элементов. Усилители подобраны таким образом, что бы они вносили минимальный фазовый сдвиг или вообще не вносили никакого фазового сдвига на частоте колебаний. Эти факторы ограничивают рабочий диапазон генераторов на операционных усилителях относительно низкими частотами.

Однозвенные RL или RC цепи вносят фазовый сдвиг величиной до 90° (но не точно 90° - их фазовый сдвиг стремится к 90°, но никогда их не достигнет) на звено, и так как для возникновения колебаний необходим фазовый сдвиг 180°, то нужно использовать хотя бы два звена в конструкции генератора (так как максимальный фазовый сдвиг будет стремиться к 180°, то необходимое дополнение фазового сдвига до точного значения 180° будет обеспечиваться входными ёмкостями и сопротивлениями активных элементов). LC цепь имеет два полюса, и может вносить фазовый сдвиг по 180° на полюс. Но LC и LR генераторы здесь не рассматриваются, так как низкочастотные индуктивности дороги, тяжелы, громоздки и сильно неидеальны. LC генераторы применяются в высокочастотных схемах, за пределами частотного диапазона операционных усилителей, там где размер, вес и цена индуктивностей менее важны.

Сдвиг по фазе определяет рабочую частоту генерации, поскольку схема будет генерировать колебания на любой частоте, на которой накапливается фазовый сдвиг в 180°. Чувствительность фазы к частоте, dφ/dω, определяет стабильность частоты. Когда буферированные RC звенья (буфер на операционном усилителе обеспечивает высокое входное и низкое выходное сопротивление) включены каскадно, то фазовый сдвиг умножается на количество звеньев, n (см. Рисунок 2).

Рис. 2. Сдвиг фаз RC звеньями.

В той области, где фазовый сдвиг равен 180°, частота генерации очень чувствительна к сдвигу фазы. Таким образом, из-за жёстких требований к частоте необходимо, чтобы фазовый сдвиг dφ, изменялся в чрезвычайно узких пределах, что бы изменения частоты dφ были бы незначительными при фазовом сдвиге, равном 180°. Из рисунка 2 видно, что хотя два последовательно соединённых RC звена в конечном итоге обеспечивают фазовый сдвиг почти 180°, величина dφ/dω на частоте генерации недопустимо мала. Следовательно, генератор на основе двух последовательно соединённых RC цепей будет иметь плохую стабильность частоты. Три одинаковых RC фильтра, включённых последовательно, имеют гораздо большее отношение dφ/dω (см. Рисунок 2), что даёт в результате улучшение стабильности частоты генератора. Добавление четвёртого RC звена позволяет создать генератор с превосходным отношением dφ/dω (см. Рисунок 2), таким образом, это даёт наиболее стабильную по частоте схему RC генератора. Четырёхзвенные RC цепи содержат максимальное число звеньев, которое используют, потому что в одном корпусе микросхемы содержится четыре ОУ, и четырёхкаскадный генератор даёт четыре синусоиды, сдвинутые по фазе друг относительно друга на 45°. Этот же генератор может быть использован для получения синусоидальных/косинусоидальных, а так же квадратурных (т.е. с разницей 90°) сигналов.

Кварцевые или керамические резонаторы позволяют создавать гораздо более стабильные генераторы, так как у резонаторов отношение dφ/dω гораздо выше из-за их нелинейных свойств. Резонаторы применяют в высокочастотных схемах, в низкочастотных схемах резонаторы не используют из-за их больших размеров, веса и стоимости. Операционные усилители обычно не используют совместно с кварцевыми или керамическими резонаторами, так как ОУ имеют низкую полосу пропускания. Опыт показывает, что вместо использования низкочастотных резонаторов для низких частот является более экономически эффективным способ, когда используется высокочастотный кварцевый генератор, выходную частоту которого следует поделить в n раз до необходимой рабочей частоты, а затем отфильтровать выходной сигнал.

5. Усиление генератора

Усиление генератора должно быть равно единице (Aβ =1∠-180°) на рабочей частоте. При нормальных условиях схема становится устойчивой в случае, когда усиление превышает единицу, и тогда генерация прекращается. Однако если усиление превышает единицу и фазовый сдвиг составляет при этом -180°, то нелинейность активных элементов понижает усиление до единицы, и генерация продолжается. Эта нелинейность становится важной в случае, если выходное напряжение усилителя приближается по величине к одному из питающих напряжений, так как в режиме отсечки или насыщения снижается усиление активных элементов (транзисторов). Парадокс здесь в том, что для технологичности на всякий случай закладывают усиление, превышающее единицу, хотя чрезмерное усиление приводит к увеличению искажения синусоидального сигнала.

Когда усиление слишком низкое, то условия ухудшаются и колебания прекращаются, а когда усиление слишком большое, то форма выходного сигнала становится больше похожа на меандр, чем на синусоиду. Искажения являются прямым результатом чрезмерного увеличения усиления, перегружающего усилитель; следовательно, усиление должно контролироваться очень тщательно в генераторах с низким коэффициентом искажениями. В генераторах на основе фазосдвигающих цепей тоже имеются искажения, но они снижаются на выходе из-за того, что последовательно соединённые RC цепи работают как RC фильтры, уменьшающие искажения. Кроме того, буферированные генераторы на фазосдвигающих цепях имеют низкий уровень искажений, поскольку усиление контролируется и распределяется между буферами.

Большинство схем требуют вспомогательной цепи для регулировки усиления, если нужно получить сигнал с малыми искажениями. Во вспомогательных цепях могут использоваться нелинейные компоненты в цепях обратной связи для автоматической регулировки усиления, или ограничители на резисторах и диодах. Необходимо также уделить внимание изменению коэффициента усиления в результате изменений температуры и допусков компонент, и уровень сложности схем определяется исходя из требуемой стабильности коэффициента усиления. Чем более стабилен коэффициент усиления, тем чище будет синусоидальный сигнал на выходе.

6. Влияние активного элемента (ОУ) на генератор

Во всех предыдущих рассуждениях предполагалось, что операционный усилитель имеет бесконечно большую полосу пропускания и его выход частотонезависим. В действительности у ОУ имеется несколько полюсов на АЧХ, но их компенсируют таким образом, что бы над ними доминировал один полюс по всей полосе пропускания. Таким образом, Aβ должна теперь считаться зависимой от частоты в зависимости от усиления A операционного усилителя. Уравнение (6) показывает эту зависимость, здесь a - это максимальное усиление петли обратной связи, ω a - это доминирующий полюс на АЧХ, и ω - частота сигнала. На рисунке 3 изображена зависимость частоты от усиления и фазы. Усиление при замкнутой цепи ОС A CL = 1/β не имеет ни полюсов, ни нулевых значений, оно постоянно при росте частоты до точки, где начинает действовать усиление при разомкнутой цепи ОС на частоте ω 3dB . Здесь амплитуда сигнала ослабляется на 3 дБ и фазовый сдвиг, вносимый ОУ составляет 45°. Амплитуда и фаза начинают изменяться на одну декаду вниз от этой точки, 0.1 x ω 3dB , и фаза продолжает сдвигаться до тех пор, пока не достигнет величины 90° в точке 10 ω 3dB , на декаду ниже точки 3 дБ. Усиление продолжает падать со скоростью –20 dB на декаду до тех пор, пока не достигнет других полюсов или нулевого значения. Чем выше усиление при замкнутой петле ОС, A CL , тем раньше оно начнёт падать.

(6)

Фазовый сдвиг, вносимый ОУ, влияет на характеристики схемы генератора, за счёт снижения частоты колебаний, а также уменьшение A CL ACL может привести к Aβ < 1, и генерация прекратится.

Рис. 3. Амплитудно-частотная характеристика операционного усилителя

Большинство ОУ имеют компенсацию и могут иметь фазовый сдвиг больше чем 45° на частоте ω 3dB . Таким образом, ОУ должен выбираться с коэффициентом усиления на полосе пропускания по крайней мере одну декаду выше частоты генерации, как показано на заштрихованном участке на рисунке 3. Генератор на мосте Вина требует усиления на полосе пропускания больше чем 43 ω OSC , что бы усиление и частота поддерживалась в пределах 10% от идеального значения . На рисунке 4 приведны сравнительные характеристики искажений на разных частотах для операционных усилителей LM328, TLV247x, и TLC071, которые имеют полосу пропускания 0.4 мГц, 2.8 мГц, and 10 мГц, которые используются в генераторе на мосте Вина с нелинейной обратной связью (). Частота колебаний лежит в диапазоне от 16 Гц до 160 кГц. График иллюстрирует важность выбора подходящего ОУ. Усилитель LM328 достигает максимальной частоты генерации 72 кГц при ослаблении усиления больше чем 75%, а TLV247x достигает 125 кГц при снижении усиления на 18%. Широкая полоса пропускания TLC071 обеспечивает частоту генерации 138 кГц при снижении усиления всего на 2%. Операционный усилитель нужно выбирать с подходящей полосой пропускания, иначе частота генерации будет лежать гораздо ниже, чем требуется.

Рис. 4. График искажения/частота для ОУ с разной шириной полосы пропускания.

Необходимо соблюдать осторожность при использовании резисторов больших номиналов в цепи обратной связи, потому что они взаимодействуют с входной ёмкостью ОУ и создают полюса с отрицательной обратной связью, а так же полюса и нули с положительной обратной связью. Резисторы больших номиналов могут сдвигать эти полюса и нули ближе к частоте генерации и воздействовать на сдвиг фаз . В заключении обратим внимание на ограничение скорости нарастания сигнала ОУ. Скорость нарастания сигнала должна быть больше чем 2πV P f 0 , где V P - это пиковое напряжение и f 0 - частота генерации; в противном случае выходной сигнал будет искажён.

7. Анализ работы схемы генератора

При создании генераторов различными способами комбинируют положительную и отрицательную обратные связи. На рисунке 5,а изображена базовая схема усилителя с отрицательной ОС и с добавленной положительной ОС. Когда применяются и положительная, и отрицательная ОС, то их усиления комбинируются в одно общее (усиление замкнутой петли ОС). Рисунок 5,а упрощается до рисунка 5,б, цепь положительной ОС представлена β = β 2 , и последующий анализ упрощается. Когда используется отрицательная ОС, то петля положительной ОС игнорируется, так как β 2 равна нулю.

Рис. 5. Блочная схема генератора.

Общий вид операционного усилителя с положительной и отрицательной ОС показан на рисунке 6,а. Первым шагом в анализе будет разрывание петли в каком-нибудь месте, но так, что бы усиление схемы не изменилось. Положительная ОС разорвана в точке, помеченной X . Тестовый сигнал V TEST подаётся в разорванную петлю и выходное напряжение V OUT измеряется с помощью эквивалентной схемы, изображённой на рисунке 6,б.

Рис. 6. Усилитель с положительной и отрицательной обратной связью.

В начале рассчитывается V + , используя уравнение (7); затем V + рассматривается как входной сигнал, подаваемый на неинвертирующий усилитель, что даёт V out из уравнения (8). Подставляя V + из уравнения (7) в уравнение (8), получаем в уравнении (9) передаточную функцию. В реальной схеме элементы заменяются для каждого импеданса, и уравнение упрощается. Эти уравнения действительны в случае, если усиление при разомкнутой петле ОС огромно и частота генерации меньше, чем 0.1 ω 3dB .

(7)

(8)

(9)

В генераторах на основе сдвига фазы обычно используют отрицательную обратную связь, так что фактор положительной обратной связи (β 2) обращается в нуль. В схемах генераторов на основе моста Вина используются и отрицательная (β 1) и положительная (β 2) обратная связи для достижения режима генерации. Уравнение (9) применяется для детального анализа этой схемы (см. часть 8.1).

8. Схемы генераторов синусоидального сигнала

Существует много типов схем генераторов гармонических сигналов и их модификаций, при практической реализации выбор зависит от частоты и желаемой монотонности выходного сигнала. Основное внимание в этой части будет уделено более известным схемам генераторов: на мосте Вина, на фазовом сдвиге, и квадратурным. Передаточная функция выводится в каждом конкретном случае с помощью методов, описанных в разделе 6 этой статьи, и в ссылках .

8.1. Генератор на основе моста Вина

Генератор на основе моста Вина является одним из наиболее простых и известных, он широко используется в аудио схемах. На рисунке 7 изображена основная схема генератора. Достоинство этой схемы - малое количество применённых деталей и хорошая стабильность частоты. Основным же её недостатком является то, что амплитуда выходного сигнала приближается к величине питающих напряжений, что приводит к насыщению выходных транзисторов операционного усилителя, и как следствие, является причиной искажений выходного сигнала. Укротить эти искажения гораздо сложнее, чем заставить схему генерировать. Существует несколько способов, чтобы минимизировать этот эффект. Они будут рассмотрены позже; сначала схема будет проанализирована для получения передаточной функции.

Рис. 7. Схема генератора на основе моста Вина.

Схема генератора на основе моста Вина имеет форму, детально описанную в , и передаточная функция для этой схемы выводится с помощью построений, описанных там. Совершенно очевидно, что Z 1 = R G , Z 2 = R F , Z 3 = (R 1 + 1/sC 1) и Z 4 = (R 2 ||1/sC 2). Петля разрывается между выходом и Z 1 , напряжение V TEST подаётся на Z 1 , и отсюда рассчитывается V OUT . Напряжение положительной ОС V + , рассчитывается первым, с помощью уравнений (10..12). Уравнение (10) показывает простой делитель напряжения у неинвертирующего входа. Каждый член умножается на (R 2 C 2 s + 1) и делится на R 2 , что даёт в результате уравнение (11).

(10)

(11)

Подставляя s = jω 0 , где jω 0 является частотой генерации, jω 1 = 1/R1C2, and jω 2 = 1/R2C1, получаем уравнение (12).

(12)

Теперь становятся очевидными некоторые интересные отношения. Конденсатор у нуля, представленный ω 1 , и конденсатор на полюсе, представленный ω 2 , должны вносить фазовый сдвиг по 90° каждый, что необходимо для генерации на частоте ω 0 . Это требует что бы C1 = C2 и R1 = R2. Выбрав ω 1 и ω 2 равными ω 0 , все слагаемые с частотами ω в уравнении сократятся, что идеально нейтрализует любое изменение амплитуды с частотой, так как полюса и нули нейтрализуют друг друга. Это приводит к общему коэффициенту обратной связи β = 1/3 (уравнение 13)

Усиление A части отрицательной обратной связи должно быть установлено таким, что бы |Aβ| = 1, что требует A = 3. Что бы это условие выполнялось, R F должно быть в два раза больше, чем R G . Операционный усилитель на рисунке 7 использует однополярное питание, так что необходимо использовать опорное напряжение V REF для смещения постоянной составляющей выходного сигнала, что бы его амплитуда была в диапазоне от нуля до напряжения питания и искажения были бы минимальны. Подача V REF на положительный вход ОУ через резистор R 2 ограничивает протекание постоянного тока через отрицательную ОС. Напряжение V REF было установлено равным 0.833 вольт для смещения уровня выходного сигнала до половины напряжения питания, что даёт на выходе амплитуду выходного сигнала +-2,5 вольт от среднего значения (см. ссылку ). При использовании двухполярного питания V REF заземляется.

Окончательная схема изображена на рисунке 8, с параметрами компонентов, выбранными для частоты генерации ω 0 = 2πf 0 , где f 0 = 1/(2πRC) = 1.59 кГц. В действительности схема генерирует на частоте 1.57 кГц, из-за разброса параметров компонент, и с коэффициентом искажений, равным 2.8%. Более высокое значение рабочей частоты является результатом обрезания выходного сигнала вблизи плюса и минуса источника питания, что приводит к появлению нескольких мощных чётных и нечётных гармоник. При этом резистор обратной связи был отрегулирован с точностью +-1%. На рисунке 9 изображены осциллограммы выходного сигнала. Искажения растут с увеличением насыщения, которое растёт с увеличением сопротивления R F , и генерация прекращается при уменьшении сопротивления R F всего на 0.8%.

Рис. 8. Окончательная схема генератора на мосте Вина.

Рис. 9. Осциллограммы выходного сигнала: влияние R F на искажения.

Применение нелинейной обратной связи может минимизировать искажения, присущие базовой схеме генератора на основе моста Вина. Нелинейный компонент, такой как лампа накаливания, можно подставить в схему на место резистора R G , как показано на рисунке 10. Сопротивление лампы, R LAMP выбрано равным половине сопротивления обратной связи, R F , при токе, протекающим через лампу, зависящим от R F и R LAMP . В момент подачи питающего напряжения на схему лампа ещё холодная и её сопротивление низкое, так что усиление будет большое (больше трёх). По мере протекания тока через нить накала, она нагревается и её сопротивление увеличивается, что приводит к снижению усиления. Нелинейное отношение между протекающим через лампу током и её сопротивлением сохраняет изменение выходного напряжения небольшим - небольшое изменение напряжения означает большое изменение сопротивления. На рисунке 11 изображён выходной сигнал этого генератора с искажениями меньше чем 0.1% для f OSC = 1.57 кГц. Искажения при таких изменениях значительно снижаются по сравнению с базовой схемой генератора, так как выходной каскад ОУ избегает сильного насыщения.

Рис. 10. Генератор на мосте Вина с нелинейной обратной связью.

Рис. 11. Выходной сигнал схемы с рисунка 10.

Сопротивление лампы в основном зависит от температуры. Амплитуда выходного сигнала очень чувствительна к температуре и имеет тенденцию к дрейфу. Поэтому коэффициент усиления должен быть больше трёх, что бы скомпенсировать любые температурные вариации, что приводит к увеличению искажений . Такой тип схемы полезен в случае, если температура изменяется не сильно, или при использовании совместно с со схемой ограничения по амплитуде.

Лампа имеет эффективную низкочастотную тепловую постоянную времени, t thermal . При подходе частоты генерации f OSC к t thermal искажения выходного сигнала сильно возрастают. Для уменьшения искажений можно применить последовательное соединение нескольких ламп, что увеличит t thermal . Недостатки этого способа в том, что время, необходимое для стабилизации колебаний увеличивается и амплитуда выходного сигнала уменьшается.

Схема с автоматической регулировкой усиления (АРУ) должна применяться в случае, если ни одна из предыдущих схем не обеспечивает достаточно низкий уровень искажений. Схема типичного генератора с АРУ на мосте Вина изображена на рисунке 12; на рисунке 13 показаны осциллограммы этой схемы. АРУ используется для стабилизации амплитуды выходного синусоидального сигнала до оптимальной величины. Полевой транзистор применён в качестве регулирующего элемента АРУ, обеспечивающего превосходное управление из-за широкого диапазона сопротивления сток-исток, которое зависит от напряжения на затворе. Напряжение на затворе транзистора равно нулю, когда подаётся напряжение питания, и соответственно сопротивление сток-исток (R DS) будет низкое. При этом сопротивления R G2 +R S +R DS соединяются параллельно с R G1 , что повышает коэффициент усиления до 3,05, и схема начинает генерировать колебания, которые постепенно увеличиваются по амплитуде. По мере роста выходного напряжения отрицательная полуволна сигнала открывает диод, и конденсатор C 1 начинает заряжаться, что обеспечивает постоянное напряжение на затворе транзистора Q1 . Резистор R 1 ограничивает ток и устанавливает постоянную времени заряда конденсатора C 1 (которая должна быть гораздо больше периода частоты f OSC). Когда коэффициент усиления достигнет трёх, то выходной сигнал стабилизируется. Искажение АРУ составляют менее 0,2%.

Схема на рисунке 12 имеет смещение V REF для однополярного питания. Последовательно с диодом можно включить стабилитрон, что бы уменьшить амплитуду выходного сигнала и снизить искажения. Можно применить двухполярное питание, для этого надо соединить с общим проводом все проводники, ведущие к V REF . Существует большое разнообразие схем генераторов на основе моста Вина с более точным управлением уровнем выходного сигнала, позволяющих ступенчато переключать частоту генерации или плавно её регулировать. Некоторые схемы используют ограничители на диодах, установленных в качестве нелинейных компонентов обратной связи. Диоды уменьшают искажения выходного сигнала путём мягкого ограничения его напряжения.

Рис. 12. Генератор на мосте Вина с АРУ.

Рис. 13. Выходной сигнал схемы с рисунка 12.

8.2. Генератор на основе сдвига фаз с одним ОУ.

Генераторы на основе сдвига фаз производят меньше искажений, чем генераторы на основе моста Вина, имея ещё и хорошую стабильность частоты. Такой генератор может быть построен с одним ОУ, как показано на рисунке 14. Три RC звена соединены последовательно, чтобы получить крутой наклон dφ/dω, необходимый для стабильной частоты колебаний, как это описано в разделе 3. Применение меньшего количества RC звеньев приводит к высокой частоте колебаний, ограниченной полосой пропускания ОУ.

Рис. 14. Генератор на основе сдвига фаз с одним ОУ.

Рис. 15. Выходной сигнал схемы с рисунка 14.

Как правило, считается, что фазосдвигающие цепи являются независимыми друг от друга, что позволяет вывести уравнение (14). Полный сдвиг фазы петли ОС составляет –180°, при этом фазовый сдвиг, вносимый каждым звеном составляет –60°. Это происходит при ω = 2πf = 1.732/RC (tan 60° = 1.732...). Величина β в этой точке будет равна (1/2) 3 , так что усиление, A , должно быть равно 8, что бы общее усиление было равно единице.

(14)

Частота колебаний с номиналами компонентов, показанных на рисунке 14, составляет 3,767 кГц, а расчётная частота составляет 2,76 кГц. Кроме того, коэффициент усиления, требуемый для возникновения генерации, равен 27, а расчётный равен 8. Это расхождение частично возникает из-за разброса параметров компонентов, однако главным фактором является неверное предположение, что RC звенья не нагружают друг друга. Эта схема была очень популярна, когда активные компоненты были большими и дорогими. Но теперь ОУ недороги, малы, и в одном корпусе содержится 4 ОУ, поэтому генератор на основе фазосдвигающей цепи на одном операционном усилители теряет популярность. Искажения выходного сигнала составляют 0,46%, что значительно меньше, чем в схеме генератора на основе моста Вина без стабилизации амплитуды.

8.3. Буферированный генератор на основе сдвига фаз

Буферизованный генератор на основе сдвига фаз намного лучше небуферизованной версии, но платой за это является большее число применённых компонентов. На рисунках 16 и 17 изображён буферизированный генератор на основе сдвига фаз, и соответственно выходной сигнал. Буферы предотвращают RC цепи от нагружения друг друга, поэтому параметры буферизированного генератора на основе сдвига фаз лежат гораздо ближе к расчётным значениям частоты и коэффициенту усиления. Резистор R G , устанавливающий коэффициент усиления, нагружает третье RC звено. Если буферизировать это звено с помощью четвёртого ОУ, то параметры генератора станут идеальными. Синусоидальный сигнал с низкими искажениями может быть получен любым генератором на основе сдвига фаз, но наиболее чистый синус получается на выходе последнего RC звена генератора. Это высокоомный выход, поэтому высокое входное сопротивление нагрузки обязательно для предотвращения перегрузки и как следствия, изменения частоты генерации из-за вариаций параметров нагрузки.

Частота генерации схемы составляет 2,9 кГц по сравнению с идеальной расчётной частотой 2,76 кГц, коэффициент усиления был равен 8,33, что близко к расчётному, равному 8. Искажения составляли 1,2%, что значительно больше, чем у небуферизованого фазового генератора. Эти расхождения параметров и сильные искажения возникают из-за большого номинала резистора обратной связи R F , который совместно с входной ёмкостью ОУ C IN создаёт полюс, лежащий поблизости от частоты 5 кГц. Резистор R G всё ещё нагружает последнее RC звено. Добавление буфера между последним RC звеном и выходом V OUT снизит усиление и частоту генерации до расчётных значений.

Рис. 16. Буферированный генератор на основе сдвига фаз.

Рис. 17. Выходной сигнал схемы с рисунка 17.

8.4. Генератор Буббы

Генератор Буббы, схема которого приведена на рисунке 18, является ещё одним генератором на основе сдвига фаз, но здесь используется выгода от применения счетверённого операционного усилителя, что приносит уникальные преимущества. Четыре RC звена требуют фазовый сдвиг по 45° в каждом звене, так что этот генератор имеет отличную d&phi/dt, что приводит к минимальному дрейфу частоты. Каждая из RC секций вносит фазовый сдвиг в 45°, поэтому снимая сигнал с разных звеньев можно получить низкоомный квадратурный выход. При снятии сигналов с выходов каждого из ОУ можно получить четыре синусоиды со сдвигом фаз по 45°. Уравнение (15) описывает петлю обратной связи. При ω = 1/RCs, уравнение 15 упрощается до уравнений (16) and (17).

(15)

(16)

Рис. 19. Выходной сигнал схемы с рисунка 18.

Что бы генерация возникла усиление A должно быть равно 4. Частота колебаний испытательной схемы составляла 1.76 кГц, при этом расчётное значение составляет 1.72 кГц, и соответственно усиление было равно 4.17 при расчётном значении, равном 4. Форма выходного сигнала показана на рисунке 19. Искажение составляют 1.1% для V OUTSINE и 0.1% for V OUTCOSINE . Синусоидальный сигнал с очень низкими искажениями может быть получен из точки соединения резисторов R и R G . Когда сигнал с низким уровнем искажений необходимо снимать со всех выходов, то общее усиление должно быть распределено среди всех ОУ. На неинвертирующий вход усиливающего ОУ подано напряжение смещения 2.5 вольт, что бы установить напряжение покоя равным половине напряжения питания при использовании однополярного источника, если же используется двухполярный источник питания то неинвертирующий вход следует заземлить. Распределение усиления между всеми ОУ требует применение смещения для них, но это никак не воздействует на частоту генерации.

8.5. Квадратурный генератор

Квадратурный генератор, изображённый на рисунке 20 является другим типом генератора на основе сдвига фаз, но три RC звена настроены так, что каждое звено вносит фазовый сдвиг по 90°. Это обеспечивает на выходе как синусоидальный, так и косинусоидальный сигнал (выходы являются квадратурными , с разностью фаз по 90°), что является явным преимуществом перед другими генераторами на основе фазовых сдвигов. Идея квадратурного генератора лежит в использовании того факта, что двойное интегрирование синусоиды даёт инвертирование сигнала, то есть происходит сдвиг сигнала по фазе на 180°. Фаза второго интегратора тогда инвертируется и используется как положительная ОС, что приводит к возникновению генрации .

Усиление петли обратной связи рассчитывается по уравнению (18). При R1C1 = R2C2 =R3C3 уравнение (18) упрощается до (19). Когда ω = 1/RC, уравнение (18) упрощается до 1∠–180, так что генерация возникает на частоте ω = 2πf = 1/RC. У испытательной схемы колебания возникают на частоте 1.65 кГц, что немного отличается от расчётной частоты, равной 1.59 кГц, как показано на рисунке 21. Это расхождение объясняется разбросом параметров компонент. Оба выхода имеют относительно высокие искажения, которые могут быть уменьшены при использовании АРУ. Синусоидальный выход имел коэффициент искажений 0,846%, косинусоидальный - 0,46%. Регулировка усиления может увеличить амплитуду выходного сигнала. Недостатком такого генератора является уменьшенная полоса пропускания.

(18)

(19)

Рис. 20. Схема квадратурного генератора.

Рис. 21. Выходной сигнал схемы с рисунка 20.

9. Заключение

Генераторы на ОУ имеют ограничение по рабочей частоте, так как у них нет необходимой ширины полосы пропускания для получения малого сдвига фаз на высоких частотах. Новые операционные усилители с обратной связью по току имеют гораздо более широкую полосу пропускания, но их очень сложно использовать в схемах генераторов, так как они очень чувствительны к ёмкостям в цепи обратной связи. Операционные усилители с обратной связью по напряжению ограничены рабочим диапазоном до сотен кГц из-за низкой полосы пропускания. Пропускная способность снижается при соединении ОУ каскадно из-за умножения фазовых сдвигов.

Генератор на основе моста Вина содержит немного компонентов и имеет хорошую стабильность частоты, но базовая схема имеет высокий коэффициент выходных искажений. Применение АРУ значительно снижает искажения, особенно в нижнем диапазоне частот. Нелинейная обратная связь обеспечивает наилучшие характеристики в средней и верхней частях частотного диапазона. Генератор на основе сдвига фаз имеет высокий уровень искажений, и без буферирования звеньев требует большого коэффициента усиления, что ограничивает его частотный диапазон очень низкой частотой. Снижение цен на операционные усилители и другие компоненты уменьшило популярность таких генераторов. Квадратурный генератор требует для своей работы всего два операционных усилителя, имеет приемлемый уровень нелинейных искажений и с его выходов можно получить синусоидальный и косинусоидальный сигналы. Его недостаток - низкая амплитуда выходного сигнала, которая может быть увеличена путём применения дополнительного каскада усиления, но это приведёт к существенному уменьшению полосы пропускания.

10. Ссылки

  1. Graeme, Jerald, Optimizing Op Amp Performance, McGraw Hill Book Company, 1997.
  2. Gottlieb, Irving M., Practical Oscillator Handbook, Newnes, 1997.
  3. Kennedy, E. J., Operational Amplifier Circuits, Theory and Applications, Holt Rhienhart and Winston, 1988.
  4. Philbrick Researches, Inc., Applications Manual for Computing Amplifiers, Nimrod Press, Inc., 1966.
  5. Graf, Rudolf F., Oscillator Circuits, Newnes, 1997.
  6. Graeme, Jerald, Applications of Operational Amplifiers, Third Generation Techniques, McGraw Hill Book Company, 1973.
  7. Single Supply Op Amp Design Techniques, Application Note, Texas Instruments Literature Number SLOA030.

Рон Манчини, Ричард Палмер

В радиолюбительской практике часто возникает необходимости использовать генератор синусоидальных колебаний. Применения ему можно найти самые разнообразные. Рассмотрим как создать генератор синусоидального сигнала на мосту Вина со стабильной амплитудой и частотой.

В статье описывается разработка схемы генератора синусоидального сигнала. Сгенерировать нужную частоту можно и программно:

Наиболее удобным, с точки зрения сборки и наладки, вариантом генератора синусоидального сигнала является генератор, построенный на мосту Вина, на современном Операционном Усилителе (ОУ).

Мост Вина

Сам по себе мост Вина является полосовым фильтром, состоящим из двух . Он выделяет центральную частоту и подавляет остальные частоты.

Мост придумал, Макс Вин еще в 1891 году. На принципиальной схеме, сам мост Вина обычно изображается следующим образом:

Картинка позаимствована у Википедии

Мост Вина обладает отношением выходного напряжения ко входному b=1/3 . Это важный момент, потому что этот коэффициент определяет условия стабильной генерации. Но об этом чуть позже

Как рассчитать частоту

На мосту Вина часто строят автогенераторы и измерители индуктивности. Чтобы не усложнять себе жизнь обычно используют R1=R2=R и C1=C2=C . Благодаря этому можно упростить формулу. Основная частота моста рассчитывается из соотношения:

f=1/2πRC

Практически любой фильтр можно рассматривать как делитель напряжения, зависящий от частоты. Поэтому при выборе номиналов резистора и конденсатора желательно, чтобы на резонансной частоте комплексное сопротивление конденсатора (Z), было равно, или хотя бы одного порядка с сопротивлением резистора.

Zc=1/ωC=1/2πνC

где ω (омега) — циклическая частота, ν (ню) — линейная частота, ω=2πν

Мост Вина и операционный усилитель

Сам по себе мост Вина не является генератором сигнала. Для возникновения генерации его следует разместить в цепи положительной обратной связи операционного усилителя. Такой автогенератор можно построить и на транзисторе. Но использование ОУ явно упростит жизнь и даст лучшие характеристики.


Коэффициент усиления на троечку

Мост Вина имеет коэффициент пропускания b=1/3 . Поэтому условием генерации является то, что ОУ должен обеспечивать коэффициент усиления равный трем. В таком случает произведение коэффициентов пропускания моста Вина и усиления ОУ даст 1. И будет происходить стабильная генерация заданной частоты.

Если бы мир был идеальным, то задав резисторами в цепи отрицательной обратной связи, нужный коэфф усиления, мы бы получили готовый генератор.


Это неинвертирующий усилитель и его коэффициент усиления определяется соотношением: K=1+R2/R1

Но увы, мир не идеален. … На практике оказывается, что для запуска генерации необходимо, чтобы в самый начальный момент коэфф. усиления был немного больше 3-х, а далее для стабильной генерации он поддерживался равным 3.

Если коэффициент усиления будет меньше 3, то генератор заглохнет, если больше — то сигнал, достигнув напряжения питания, начнет искажаться, и наступит насыщение.

При насыщении, на выходе будет поддерживаться напряжение, близкое к одному из напряжений питания. И будут происходить случайные хаотичные переключения между напряжениями питания.


Поэтому, строя генератор на мосте Вина, прибегают к использованию нелинейного элемента в цепи отрицательной обратной связи, регулирующего коэффициент усиления. В таком случае генератор будет сам себя уравновешивать и поддерживать генерацию на одинаковом уровне.

Стабилизация амплитуды на лампе накаливания

В самом классическом варианте генератора на мосте Вина на ОУ, применяется миниатюрная низковольтная лампа накаливания, которая устанавливается вместо резистора.


При включении такого генератора, в первый момент, спираль лампы холодная и ее сопротивление мало. Это способствует запуску генератора (K>3). Затем, по мере нагрева, сопротивление спирали увеличивается, а коэффициент усиления снижается, пока не дойдет до равновесия (K=3).

Цепь положительной обратной связи, в которую был помещен мост Вина, остается без изменений. Общая принципиальная схема генератора выглядит следующим образом:


Элементы положительной обратной связи ОУ определяют частоту генерации. А элементы отрицательной обратной связи — усиление.

Идея использования лампочки, в качестве управляющего элемента очень интересна и используется по сей день. Но у лампочки, увы, есть ряд недостатков:

  • требуется подбор лампочки и токоограничивающего резистора R*.
  • при регулярном использовании генератора, срок жизни лампочки обычно ограничивается несколькими месяцами
  • управляющие свойства лампочки зависят от температуры в комнате.

Другим интересным вариантом является применение терморезистора с прямым подогревом. По сути, идея та же, только вместо спирали лампочки используется терморезистор. Проблема в том, что его нужно для начала найти и опять таки подобрать его и токоограничиващие резисторы.

Стабилизация амплитуды на светодиодах

Эффективным методом стабилизации амплитуды выходного напряжения генератора синусоидальных сигналов является применение в цепи отрицательной обратной связи ОУ светодиодов (VD1 и VD2 ).

Основной коэффициент усиления задается резисторами R3 и R4 . Остальные же элементы (R5 , R6 и светодиоды) регулируют коэффициент усиления в небольшом диапазоне, поддерживая генерацию стабильной. Резистором R5 можно регулировать величину выходного напряжения в интервале примерное 5-10 вольт.

В дополнительной цепи ОС желательно использовать низкоомные резисторы (R5 и R6 ). Это позволит пропускать значительный ток (до 5мА) через светодиоды и они будут находиться в оптимальном режиме. Даже будут немного светиться:-)

На показанной выше схеме, элементы моста Вина рассчитаны для генерации на частоте 400 Гц, однако они могут быть легко пересчитаны для любой другой частоты по формулам, представленным в начале статьи.

Качество генерации и применяемых элементов

Важно, чтобы операционный усилитель мог обеспечить необходимый для генерации ток и обладал достаточной полосой пропускания по частоте. Использование в качестве ОУ народных TL062 и TL072 дало очень печальные результаты на частоте генерации 100кГц. Форму сигнала было трудно назвать синусоидальной, скорее это был треугольный сигнал. Использование TDA 2320 дало еще более худший результат.

А вот NE5532 показа себя с отличной стороны, выдав на выходе сигнал очень похожий на синусоидальный. LM833 так же справилась с задачей на отлично. Так что именно NE5532 и LM833 рекомендуются к использованию как доступные и распространенные качественные ОУ. Хотя с понижением частоты гораздо лучше себя будут чувствовать и остальные ОУ.

Точность частоты генерации напрямую зависит от точности элементов частотозависимой цепи. И в данном случае важно не только соответствие номинала элемента надписи на нем. Более точные детали имеют лучшую стабильность величин при изменении температуры.

В авторском варианте были применены резистор типа С2-13 ±0.5% и слюдяные конденсаторы точностью ±2%. Применение резисторов указанного типа обусловлено малой зависимостью их сопротивления от температуры. Слюдяные конденсаторы так же мало зависят от температуры и имеют низкий ТКЕ.

Минусы светодиодов

На светодиодах стоит остановиться отдельно. Их использование в схеме синус генератора вызвано величиной падения напряжения, которое обычно лежит в интервале 1.2-1.5 вольта. Это позволяет получать достаточно высокое значение выходного напряжения.


После реализации схемы, на макетной плате, выяснилось, что из-за разброса параметров светодиодов, фронты синусоиды на выходе генератора не симметричны. Это немного заметно даже на приведенной выше фотографии. Помимо этого присутствовали небольшие искажения формы генерируемого синуса, вызванные недостаточной скоростью работы светодиодов для частоты генерации 100 кГц.

Диоды 4148 вместо светодиодов

Светодиоды были заменены на всеми любимые диоды 4148. Это доступные быстродействующие сигнальные диоды со скоростью переключения менее 4 нс. Схема при этом осталась полноценно работоспособной, от описанных выше проблем не осталось и следа, а синусоида приобрела идеальный вид.

На следующей схеме элементы моста вина рассчитаны на частоту генерации 100 кГц. Так же переменный резистор R5 был заменен на постоянные, но об этом позже.


В отличие от светодиодов, падение напряжения на p-n переходе обычных диодов составляет 0.6÷0.7 В, поэтому величина выходного напряжения генератора составила около 2.5 В. Для увеличения выходного напряжения возможно включение нескольких диодов последовательно, вместо одного, например вот так:


Однако увеличение количества нелинейных элементов сделает генератор более зависимым от внешней температуры. По этой причине было решено отказаться от такого подхода и использовать по одному диоду.

Замена переменного резистора постоянными

Теперь о подстроечном резисторе. Изначально в качестве резистора R5 был применен многооборотный подстроечный резистор на 470 Ом. Он позволял точно регулировать величину выходного напряжения.

При построении любого генератора крайне желательно наличие осциллографа. Переменный резистор R5 напрямую влияет на генерацию — как на амлитуду так и на стабильность.

Для представленной схемы генерация стабильна лишь в небольшом интервале сопротивлений этого резистора. Если соотношение сопротивлений больше требуемого — начинается клиппинг, т.е. синусоида будет подрезаться сверху и снизу. Если меньше — форма синусоиды начинает искажаться, а при дальнейшем уменьшении генерация глохнет.

Так же это зависит от используемого напряжения питания. Описываемая схема исходно была собрана на ОУ LM833 с питанием ±9В. Затем, без изменения схемы, ОУ были заменены на AD8616, а напряжение питания на ±2,5В (максимум для этих ОУ). В итоге такой замены синусоида на выходе подрезалась. Подбор резисторов дал значения 210 и 165 ом, вместо 150 и 330 соответственно.

Как подобрать резисторы «на глаз»

В принципе можно оставить и подстроечный резистор. Все зависит от требуемой точности и генерируемой частоты синусоидального сигнала.

Для самостоятельного подбора следует, в первую очередь, установить подстроечный резистор номиналом 200-500 Ом. Подав выходной сигнал генератора на осциллограф и вращая подстроечный резистор дойти до момента когда начнется ограничение.

Затем понижая амплитуду найти положение, в котором форма синусоиды будет наилучшей.Теперь можно выпаять подстроечник, замерить получившиеся величины сопротивлений и впаять максимально близкие значения.

Если вам требуется генератор синусоидального сигнала звуковой частоты, то можно обойтись и без осциллографа. Для этого, опять таки, лучше дойти до момента когда сигнал, на слух, начнет искажаться из-за подрезания, а затем убавить амплитуду. Убавлять следует до тех пор пока искажения не пропадут, а затем еще немного. Это необходимо т.к. на слух не всегда можно уловить искажения и в 10%.

Дополнительное усиление

Генератор синуса был собран на сдвоенном ОУ, и половина микросхемы осталась висеть в воздухе. Поэтому логично задействовать ее под регулируемый усилитель напряжения. Это позволило перенести переменный резистор из дополнительной цепи ОС генератора в каскад усилителя напряжения для регулировки выходного напряжения.

Применение дополнительного усилительного каскада гарантирует лучшее согласование выхода генератора с нагрузкой. Он был построен по классической схеме неинвертирующего усилителя.


Указанные номиналы позволяют изменять коэффициент усиления от 2 до 5. При необходимости номиналы можно пересчитать под требуемую задачу. Коэффициент усиления каскада задается соотношением:

K=1+R2/R1

Резистор R1 представляет из себя сумму последовательно включенных переменного и постоянного резисторов. Постоянный резистор нужен, чтобы при минимальном положении ручки переменного резистора коэффициент усиления не ушел в бесконечность.

Как умощнить выход

Генератор предполагался для работы на низкоомную нагрузку в несколько Ом. Разумеется ни один маломощный ОУ не сможет выдать необходимый ток.

Для умощнения, на выходе генератора разместился повторитель на TDA2030. Все вкусности такого применения этой микросхемы описаны в статье .

А вот так собственно выглядит схема всего синусоидального генератора с усилителем напряжения и повторителем на выходе:


Генератор синуса на мосту Вина можно собрать и на самой TDA2030 в качестве ОУ. Все зависит от требуемой точности и выбранной частоты генерации.

Если нет особых требований к качеству генерации и требуемая частота не превышает 80-100 кГц, но при этом предполагается работа на низкоомную нагрузку, то этот вариант вам идеально подойдет.

Заключение

Генератор на мосту Вина — это не единственный способ генерации синусоиды. Если вы нуждаетесь в высокоточной стабилизации частоты то лучше смотреть в сторону генераторов с кварцевым резонатором.

Однако, описанная схема, подойдет для подавляющего большинства случаев, когда требуется получение стабильного, как по частоте так и по амплитуде, синусоидального сигнала.

Генерация это хорошо, а как точно измерить величину переменного напряжения высокой частоты? Для это отлично подходит схема которая называется .

Материал подготовлен исключительно для сайта