Как узнать какой разъем у жесткого диска. Провод для подключения жесткого диска. Какие бывают разъемы жестких дисков

Доброго времени суток! В прошлой записи мы с вами в подробностях рассмотрели устройство харда, но я специально ничего не сказал про интерфейсы — то есть способы взаимодействия харда и остальных устройств компа, или если еще конкретней, способы взаимодействия (соединения) харда и материнской платы писишника.

А почему не сказал? А потому что эта тема — достойна объема никак не меньшего целого поста. Так что сейчас разберем подробно наиболее популярные на сегодняшний день интерфейсы . Сразу оговорюсь, что запись или пост (кому как удобнее) в данный раз будет иметь внушительные размеры, но куда деваться, без этого к сожалению никак, потому как если написать кратко, получится не совсем понятно.

Быстрая навигация

Понятие интерфейса жесткого диска ПК

Для начала давайте дадим определение понятию «интерфейс». Говоря простым языком (а именно им я и буду по-возможности выражаться, поскольку блог то на обычных людей рассчитан, таких как мы с вами), интерфейс — способ взаимодействия устройств друг с другом и не только устройств. К примеру, многие из вас должно быть слышали про так называемый «дружественный» интерфейс какой-либо программы. Что это значит? Это значит, что взаимодействие человека и программы более легкое, не требующее со стороны пользователя большИх усилий, по сравнению с интерфейсом «не дружественным». В нашем же случае, интерфейс — просто способ взаимодействия конкретно харда и материнской платы писишника. Он представляет собой набор специальных линий и специального протокола (набора правил передачи данных). То есть чисто физически — шлейф (кабель, провод), с 2-х сторон которого располагаются входы, а на жестком диске и материнке есть специальные порты (места, куда присоединяется кабель). Таким образом, понятие интерфейс — включает в себя соединительный кабель и порты, находящиеся на соединяемых им устройствах.

Виды взаимодействия винтов и материнской платы компа (виды интерфейсов)

Что ж, первым на очереди у нас будет самый «древний» (80-е года) из всех, в современных HDD его уже не встретить, это интерфейс IDE (он же ATA, PATA).

IDE

IDE — в переводе с английского «Integrated Drive Electronics», что буквально означает — «встроенный контроллер». Это уже потом IDE стали называть интерфейсом для передачи данных, ввиду того, что контроллер (находящийся в устройстве, в основном в жестких дисках и оптических приводах) и надо было чем-то соединять. Его (IDE) еще называют ATA (Advanced Technology Attachment), получается что то вроде «Усовершенствованная технология подсоединения». Дело в том, что ATA — параллельный интерфейс передачи данных, за что вскоре (буквально сразу после выхода SATA, о котором речь пойдет чуть ниже) он был переименован в PATA (Parallel ATA).

Что тут сказать, IDE хоть и был очень медленный (пропускная способность канала передачи данных составляла от 100 до 133 мегабайта в секунду в разных версиях IDE — и то чисто теоретически, на практике гораздо меньше), однако позволял присоединять сразу сразу два устройства к материнской плате, используя при этом один шлейф.

Причем в случае подключения сразу 2-х устройств, пропускная способность линии делилась пополам. Но, это далеко не единственный недостаток IDE. Сам провод, как видно из рисунка, достаточно широкий и при подключении займет львиную долю свободного пространства в системном блоке, что негативно скажется на охлаждении всей в целом. В общем IDE уже устарел морально и физически, по данной причине разъем IDE уже не встретить на многих современных материнских платах, хотя до недавнего времени их еще ставили (в количестве 1 шт.) на бюджетные платы и на некоторые платы среднего ценового сегмента.

SATA

Следующим, не менее популярным, чем IDE в свое время, интерфейсом является SATA (Serial ATA), характерной особенностью которого является последовательная передача данных. Стоит отметить, что на момент написания поста — является самым массовым для применения в компьютерах.

Существуют три основных варианта (ревизии) SATA, отличающиеся друг от друга пропускной способностью: rev. 1 (SATA I) — 150 Мб/с, rev. 2 (SATA II) — 300 Мб/с, rev. три (SATA III) — 600 Мб/с. Но это только в теории. На практике же, скорость записи/чтения винтов в основном не превышает 100-150 Мб/с, а оставшаяся скорость пока не востребована и влияет разве что на скорость взаимодействия контроллера и кэш-памяти HDD (повышает скорость доступа к диску).

Из нововведений отмечу — обратную совместимость всех версий SATA (диск с разъемом SATA rev. 2 можно подключить к мат. плате с разъемом SATA rev. три и т.п.), улучшенный внешний вид и удобство подключения/отключения кабеля, увеличенная по сравнению с IDE длина кабеля (1 метр максимально, против 46 см на IDE интерфейсе), поддержка функции NCQ начиная уже с первой ревизии. Спешу обрадовать обладателей старых устройств, не поддерживающих SATA — существуют переходники с PATA на SATA, это реальный выход из ситуации, позволяющий избежать траты денег на покупку новой материнской платы или нового жесткого диска.

Так же, в отличие от PATA, интерфейсом SATA предусмотрена «горячая замена» жестяков, это значит, что при включенном питании системника компа, можно присоединять/отсоединять жесткие диски. Только для ее реализации надо будет немного покопаться в настройках БИОС и включить режим AHCI.

eSATA (External SATA)

Следующий по списку — eSATA (External SATA) — был создан в 2004 году, слово «external» говорит о том, что он используется для подключения внешних жестких дисков. Поддерживает «горячую замену» дисков. Длина интерфейсного кабеля увеличена по сравнению с SATA — максимальная длина составляет в данный момент аж два метра. eSATA физически не совместим с SATA, но обладает той же пропускной способностью.

Но eSATA — далеко не единственный способ подключить внешние устройства к компу. Например FireWire — последовательный высокоскоростной интерфейс для подключения внешних устройств, в том числе HDD.

Поддерживает «горячу замену» винтов. По пропускной способности сравним с USB 2.0, а с появлением USB 3.0 — даже проигрывает в скорости. Однако у него все же есть преимущество — FireWire может обеспечить изохронную передачу данных, что способствует его применению в цифровом видео, так как он даёт возможность передавать данные в режиме реального времени. Несомненно, FireWire популярен, но не настолько, как к примеру USB или eSATA. Для подключения винтов он используется довольно редко, в большинстве случаев при помощи FireWire подключают различные мультимедийные устройства.

USB (Universal Serial Bus)

USB (Universal Serial Bus), пожалуй самый распространенный интерфейс, используемый для подключения внешних жестяков, флешек и твердотельных накопителей (SSD). Как и в предыдущем случае — есть поддержка «горячей замены», довольно большая максимальная длина соединительного кабеля — до 5 метров в случае использования USB 2.0, и до три метров — если используется USB 3.0. Наверное можно сделать и бОльшую длину кабеля, но в этом случае стабильная работа устройств будет под вопросом.

Скорость передачи данных USB 2.0 составляет порядка 40 Мб/с, что в общем-то является низким показателем. Да, конечно, для обыкновенной повседневной работы с файлами пропускной способности канала в 40 Мб/с хватит за глаза, но как только речь пойдет о работе с крупными файлами, поневоле начнешь смотреть в сторону чего-то более скоростного. Но оказывается выход есть, и имя ему — USB 3.0, пропускная способность которого, по сравнению с предшественником, возросла в 10 раз и составляет порядка 380 Мб/с, то есть практически как у SATA II, даже чуть больше.

Есть две разновидности контактов кабеля USB, это тип «A» и тип «B», расположенные на противоположных концах кабеля. Тип «A» — контроллер (материнская плата), тип «B» — подключаемое устройство.

USB 3.0 (тип «A») совместим с USB 2.0 (тип «A»). Типы «B» не совместимы между собой, как видно из рисунка.

Thunderbolt (Light Peak)

Thunderbolt (Light Peak). В 2010 году компанией Intel был продемонстрирован первый комп с данным интерфейсом, а чуть позднее в поддержку Thunderbolt к Intel присоединилась не менее известная компания Apple. Thunderbolt достаточно крут (ну а как иначе то, Apple знает во что стоит вкладывать деньги), стоит ли говорить о поддержке им таких фич, как: пресловутая «горячая замена», сразуе соединение сразу с несколькими устройствами, действительно «огромная» скорость передачи данных (в 20 раз быстрее USB 2.0).

Максимальная длина кабеля составляет только три метра (видимо больше и не надо). Тем не менее, несмотря на все перечисленные преимущества, Thunderbolt пока что не является «массовым» и применяется преимущественно в дорогих устройствах.

Идем дальше. На очереди у нас пара из очень похожих друг на друга интерфейсов — SAS и SCSI. Похожесть их заключается в том, что они оба применяются преимущественно в серверах, где требуется высокая производительность и как можно меньшее время доступа к жесткому диску. Но, существует и обратная сторона медали — все преимущества данных интерфейсов компенсируются ценой устройств, поддерживающих их. Жесткие диски, поддерживающие SCSI или SAS стоят на порядок дороже.

SCSI (Small Computer System Interface)

SCSI (Small Computer System Interface) — параллельный интерфейс для подключения различных внешних устройств (не только жестких дисков).

Был разработан и стандартизирован даже несколько раньше, чем первая версия SATA. В свежих версия SCSI есть поддержка «горячей замены».

SAS (Serial Attached SCSI)

SAS (Serial Attached SCSI) пришедший на смену SCSI, должен был решить ряд недостатков последнего. И надо сказать — ему это удалось. Дело в том, что из-за своей «параллельности» SCSI использовал общую шину, так что с контроллером сразу могло работать только лишь одно из устройств, SAS — лишен этого недостатка.

Кроме этого, он обратно совместим с SATA, что несомненно является крупным плюсом. К сожалению цена винтов с интерфейсом SAS близка к стоимости SCSI-винчестеров, но от этого никак не избавиться, за скорость приходится платить.

NAS (Network Attached Storage)

Если вы еще не утомились, предлагаю рассмотреть еще один прикольный способ подключения HDD — NAS (Network Attached Storage). В настоящее время сетевые системы хранения информации (NAS) имеют большую популярность. По сути, это отдельный комп, этакий мини-сервер, отвечающий за хранение данных. Он подключается к другому ПК через сетевой кабель и управляется с другого компа через обычный браузер. Это все надо в тех случаях, когда требуется большое дисковое пространство, которым пользуются сразу несколько людей (в семье, на работе). Данные от сетевого хранилища передаются к писишникам юзеров либо по обычному кабелю (Ethernet), либо при помощи Wi-Fi. На мой взгляд, очень удобная штука.

Надеюсь вам понравился материал, предлагаю добавить в закладки бложик, чтобы ничего не пропустить и встретимся с вами уже в следующих постах сайта.

В этой статье речь пойдет о том, что позволяет подключить жесткий диск к компьютеру, а именно, об интерфейсе жесткого диска. Точнее говорить, об интерфейсах жестких дисков, потому что технологий для подключения этих устройств за все время их существования было изобретено великое множество, и обилие стандартов в данной области может привести в замешательство неискушенного пользователя. Впрочем, обо все по порядку.

Интерфейсы жестких дисков (или строго говоря, интерфейсы внешних накопителей, поскольку в их качестве могут выступать не только , но и другие типы накопителей, например, приводы для оптических дисков) предназначены для обмена информацией между этими устройствами внешней памяти и материнской платой. Интерфейсы жестких дисков, не в меньшей степени, чем физические параметры накопителей, влияют на многие рабочие характеристики накопителей и на их производительность. В частности, интерфейсы накопителей определяют такие их параметры, как скорость обмена данными между жестким диском и материнской платой, количество устройств, которые можно подключить к компьютеру, возможность создания дисковых массивов, возможность горячего подключения, поддержка технологий NCQ и AHCI, и.т.д. Также от интерфейса жесткого диска зависит, какой кабель, шнур или переходник для его подключения к материнской плате вам потребуется.

SCSI - Small Computer System Interface

Интерфейс SCSI является одним из самых старых интерфейсов, разработанных для подключения накопителей в персональных компьютерах. Появился данный стандарт еще в начале 1980-х гг. Одним из его разработчиков был Алан Шугарт, также известный, как изобретатель дисководов для гибких дисков.

Внешний вид интерфейса SCSI на плате и кабеля подключения к нему

Стандарт SCSI (традиционно данная аббревиатура читается в русской транскрипции как «скази») первоначально предназначался для использования в персональных компьютерах, о чем свидетельствует даже само название формата – Small Computer System Interface, или системный интерфейс для небольших компьютеров. Однако так получилось, что накопители данного типа применялись в основном в персональных компьютерах топ-класса, а впоследствии и в серверах. Связано это было с тем, что, несмотря на удачную архитектуру и широкий набор команд, техническая реализация интерфейса была довольно сложна, и не подходила по стоимости для массовых ПК.

Тем не менее, данный стандарт обладал рядом возможностей, недоступных для прочих типов интерфейсов. Например, шнур для подключения устройств Small Computer System Interface может иметь максимальную длину в 12 м, а скорость передачи данных – 640 МБ/c.

Как и появившийся несколько позже интерфейс IDE, интерфейс SCSI является параллельным. Это означает, что в интерфейсе применяются шины, передающие информацию по нескольким проводникам. Данная особенность являлась одним из сдерживающих факторов для развития стандарта, и поэтому в качестве его замены был разработан более совершенный, последовательный стандарт SAS (от Serial Attached SCSI).

SAS - Serial Attached SCSI

Так выглядит интерфейс SAS серверного диска

Serial Attached SCSI разрабатывался в усовершенствования достаточно старого интерфейса подключения жестких дисков Small Computers System Interface. Несмотря на то, что Serial Attached SCSI использует основные достоинства своего предшественника, тем не менее, у него есть немало преимуществ. Среди них стоит отметить следующие:

  • Использование общей шины всеми устройствами.
  • Последовательный протокол передачи данных, используемый SAS, позволяет задействовать меньшее количество сигнальных линий.
  • Отсутствует необходимость в терминации шины.
  • Практически неограниченное число подключаемых устройств.
  • Более высокая пропускная способность (до 12 Гбит/c). В будущих реализациях протокола SAS предполагается поддерживать скорость обмена данными до 24 Гбит/c.
  • Возможность подключения к контроллеру SAS накопителей с интерфейсом Serial ATA.

Как правило, системы Serial Attached SCSI строятся на основе нескольких компонентов. В число основных компонентов входят:

  • Целевые устройства. В эту категорию включают собственно накопители или дисковые массивы.
  • Инициаторы – микросхемы, предназначенные для генерации запросов к целевым устройствам.
  • Система доставки данных – кабели, соединяющие целевые устройства и инициаторы

Разъемы Serial Attached SCSI могут иметь различную форму и размер, в зависимости от типа (внешний или внутренний) и от версий SAS. Ниже представлены внутренний разъем SFF-8482 и внешний разъем SFF-8644, разработанный для SAS-3:

Слева - внутренний разъём SAS SFF-8482; Справа - внешний разъём SAS SFF-8644 с кабелем.

Несколько примеров внешнего вида шнуров и переходников SAS: шнур HD-Mini SAS и шнур-переходник SAS-Serial ATA.

Слева - шнур HD Mini SAS; Справа - переходной шнур с SAS на Serial ATA

Firewire - IEEE 1394

Сегодня достаточно часто можно встретить жесткие диски с интерфейсом Firewire. Хотя через интерфейс Firewire к компьютеру можно подключить любые типы периферийных устройств, и его нельзя назвать специализированным интерфейсом, предназначенным для подключения исключительно жестких дисков, тем не менее, Firewire имеет ряд особенностей, которые делают его чрезвычайно удобным для этой цели.

FireWire - IEEE 1394 - вид на ноутбуке

Интерфейс Firewire был разработан в середине 1990-х гг. Начало разработке положила небезызвестная фирма Apple, нуждавшаяся в собственной, отличной от USB, шине для подключения периферийного оборудования, прежде всего мультимедийного. Спецификация, описывающая работу шины Firewire, получила название IEEE 1394.

На сегодняшний день Firewire представляет собой один из наиболее часто используемых форматов высокоскоростной последовательной внешней шины. К основным особенностям стандарта можно отнести:

  • Возможность горячего подключения устройств.
  • Открытая архитектура шины.
  • Гибкая топология подключения устройств.
  • Меняющаяся в широких пределах скорость передачи данных – от 100 до 3200 Мбит/c.
  • Возможность передачи данных между устройствами без участия компьютера.
  • Возможность организации локальных сетей при помощи шины.
  • Передача питания по шине.
  • Большое количество подключаемых устройств (до 63).

Для подключения винчестеров (обычно посредством внешних корпусов для жестких дисков) через шину Firewire, как правило, используется специальный стандарт SBP-2, использующий набор команд протокола Small Computers System Interface. Существует возможность подключения устройств Firewire к обычному разъему USB, но для этого требуется специальный переходник.

IDE - Integrated Drive Electronics

Аббревиатура IDE, несомненно, известна большинству пользователей персональных компьютеров. Стандарт интерфейса для подключения жестких дисков IDE был разработан известной фирмой, производящей жесткие диски – Western Digital. Преимуществом IDE по сравнению с другими существовавшими в то время интерфейсами, в частности, интерфейсом Small Computers System Interface, а также стандартом ST-506, было отсутствие необходимости устанавливать контроллер жесткого диска на материнскую плату. Стандарт IDE подразумевал установку контроллера привода на корпус самого накопителя, а на материнской плате оставался лишь хост-адаптер интерфейса для подключения приводов IDE.

Интерфейс IDE на материнской плате

Данное нововведение позволило улучшить параметры работы накопителя IDE благодаря тому, что сократилось расстояние между контроллером и самим накопителем. Кроме того, установка контроллера IDE внутрь корпуса жесткого диска позволила несколько упростить как материнские платы, так и производство самих винчестеров, поскольку технология давала свободу производителям в плане оптимальной организации логики работы накопителя.

Новая технология первоначально получила название Integrated Drive Electronics (Встроенная в накопитель электроника). Впоследствии был разработан описывающий ее стандарт, названный ATA. Это название происходит от последней части названия семейства компьютеров PC/AT посредством добавления слова Attachment.

Для подключения жесткого диска или другого устройства, например, накопителя для оптических дисков, поддерживающего технологию Integrated Drive Electronics, к материнской плате, используется специальный кабель IDE. Поскольку ATA относится к параллельным интерфейсам (поэтому его также называют Parallel ATA или PATA), то есть, интерфейсам, предусматривающим одновременную передачу данных по нескольким линиям, то его кабель данных имеет большое количество проводников (обычно 40, а в последних версиях протокола имелась возможность использовать 80-жильный кабель). Обычный кабель данных для данного стандарта имеет плоский и широкий вид, но встречаются и кабели круглого сечения. Кабель питания для накопителей Parallel ATA имеет 4-контактный разъем и подсоединен к блоку питания компьютера.

Ниже приведены примеры кабеля IDE и круглого шнура данных PATA:

Внешний вид интерфейсного кабеля: cлева - плоский, справа в круглой оплетке - PATA или IDE.

Благодаря сравнительной дешевизне накопителей Parallel ATA, простоте реализации интерфейса на материнской плате, а также простоте установки и конфигурации устройств PATA для пользователя, накопители типа Integrated Drive Electronics на длительное время вытеснили с рынка винчестеров для персональных компьютеров бюджетного уровня устройства других типов интерфейса.

Однако стандарт PATA имеет и ряд недостатков. Прежде всего, это ограничение по длине, которую может иметь кабель данных Parallel ATA – не более 0,5 м. Кроме того, параллельная организация интерфейса накладывает ряд ограничений на максимальную скорость передачи данных. Не поддерживает стандарт PATA и многие расширенные возможности, которые имеются у других типов интерфейсов, например, горячее подключение устройств.

SATA - Serial ATA

Вид интерфейса SATA на материнской плате

Интерфейс SATA (Serial ATA), как можно догадаться из названия, является усовершенствованием ATA. Заключается это усовершенствование, прежде всего, в переделке традиционного параллельного ATA (Parallel ATA) в последовательный интерфейс. Однако этим отличия стандарта Serial ATA от традиционного не ограничиваются. Помимо изменения типа передачи данных с параллельного на последовательный, изменились также разъемы для передачи данных и электропитания.

Ниже приведен шнур данных SATA:

Шнур передачи данных для SATA интерфейса

Это позволило использовать шнур значительно большей длины и увеличить скорость передачи данных. Однако минусом стало то обстоятельство, что устройства PATA, которые до появления SATA присутствовали на рынке в огромных количествах, стало невозможно напрямую подключить в новые разъемы. Правда, большинство новых материнских плат все же имеют старые разъемы и поддерживают подключение старых устройств. Однако обратная операция – подключение накопителя нового типа к старой материнской плате обычно вызывает куда больше проблем. Для этой операции пользователю обычно требуется переходник Serial ATA to PATA. Переходник для кабеля питания обычно имеет сравнительно простую конструкцию.

Переходник питания Serial ATA to PATA:

Слева общий вид кабеля; Cправа укрупнено внешний вид коннекторов PATA и Serial ATA

Сложнее, однако, дело обстоит с таким устройством, как переходник для подключения устройства последовательного интерфейса в разъем для параллельного интерфейса. Обычно переходник такого типа выполнен в виде небольшой микросхемы.

Внешний вид универсального двунаправленного переходника между интерфейсами SATA - IDE

В настоящее время интерфейс Serial ATA практически вытеснил Parallel ATA, и накопители PATA можно встретить теперь в основном лишь в достаточно старых компьютерах. Еще одной особенностью нового стандарта, обеспечившей его широкую популярность, стала поддержка .

Вид переходника с IDE на SATA

О технологии NCQ можно рассказать чуть подробнее. Основное преимущество NCQ состоит в том, что она позволяет использовать идеи, которые давно были реализованы в протоколе SCSI. В частности, NCQ поддерживает систему упорядочивания операций чтения/записи, поступающих к нескольким накопителям, установленным в системе. Таким образом, NCQ способна значительно повысить производительность работы накопителей, в особенности массивов жестких дисков.

Вид переходника с SATA на IDE

Для использования NCQ необходима поддержка технологии со стороны жесткого диска, а также хост-адаптера материнской платы. Практически все адаптеры, поддерживающие AHCI, поддерживают и NCQ. Кроме того, NCQ поддерживают и некоторые старые проприетарные адаптеры. Также для работы NCQ требуется ее поддержка со стороны операционной системы.

eSATA - External SATA

Отдельно стоит упомянуть о казавшемся многообещающим в свое время, но так и не получившем широкого распространения формате eSATA (External SATA). Как можно догадаться из названия, eSATA представляет собой разновидность Serial ATA, предназначенную для подключения исключительно внешних накопителей. Стандарт eSATA предлагает для внешних устройств большую часть возможностей стандартного, т.е. внутреннего Serial ATA, в частности, одинаковую систему сигналов и команд и столь же высокую скорость.

Разъем eSATA на ноутбуке

Тем не менее, у eSATA есть и некоторые отличия от породившего его стандарта внутренней шины. В частности, eSATA поддерживает более длинный кабель данных (до 2 м), а также имеет более высокие требования к питанию накопителей. Кроме того, разъемы eSATA несколько отличаются от стандартных разъемов Serial ATA.

По сравнению с другими внешними шинами, такими, как USB и Firewire, eSATA, однако, имеет один существенный недостаток. Если эти шины позволяют осуществлять электропитание устройства через сам кабель шины, то накопитель eSATA требует специальные разъемы для питания. Поэтому, несмотря на сравнительно высокую скорость передачи данных, eSATA в настоящее время не пользуется большой популярностью в качестве интерфейса для подключения внешних накопителей.

Заключение

Информация, хранящаяся на жестком диске, не может стать полезной для пользователя и доступной для прикладных программ до тех пор, пока к ней не получит доступ центральный процессор компьютера. Интерфейсы жестких дисков представляют собой средство для связи между этими накопителями и материнской платой. На сегодняшний день существует немало различных типов интерфейсов жестких дисков, каждый из которых имеет свои достоинства, недостатки и характерные особенности. Надеемся, что приведенная в данной статье информация во многом окажется полезной для читателя, ведь выбор современного жесткого диска во многом определяются не только его внутренними характеристиками, такими, как емкость, объем кэш-памяти, скорость доступа и вращения, но и тем интерфейсом, для которого он был разработан.

Жёсткий диск - простая и маленькая "коробочка" с виду, хранящая огромные объёмы информации в компьютере любого современного пользователя.

Именно таковой она кажется снаружи: достаточно незамысловатой вещицей. Редко кто при записи, удалении, копировании и прочих действий с файлами различной важности задумывается о принципе взаимодействия жёсткого диска с компьютером. А если ещё точнее - непосредственно с самой материнской платой.

Как эти компоненты связаны в единую бесперебойную работу, каким образом устроен сам жесткий диск, какие разъемы подключения у него есть и для чего каждый из них предназначен - это ключевая информация о привычном для всех устройстве хранения данных.

Интерфейс HDD

Именно этим термином можно корректно называть взаимодействие с материнской платой. Само же слово имеет гораздо более широкое значение. К примеру, интерфейс программы. В этом случае подразумевается та часть, которая обеспечивает способ взаимодействия человека с ПО (удобный «дружелюбный» дизайн).

Однако же рознь. В случае с HDD и материнской платой он представляет не приятное графическое оформление для пользователя, а набор специальных линий и протоколов передачи данных. Друг к другу эти компоненты подключаются при помощи шлейфа - кабеля со входами на обоих концах. Они предназначены для соединения с портами на жёстком диске и материнской плате.

Иными же словами, весь интерфейс на этих устройствах - два кабеля. Один подключается в разъем питания жесткого диска с одного конца и к самому БП компьютера с другого. А второй из шлейфов соединяет HDD с материнской платой.

Как в былые времена подключали жёсткий диск - разъем IDE и другие пережитки прошлого

Самое начало, после которого появляются более совершенные интерфейсы HDD. Древний по нынешним меркам появился на рынке примерно в 80-х годах прошлого столетия. IDE дословно в переводе означает «встроенный контроллер».

Будучи параллельным интерфейсом данных, его ещё принято называть ATA - Однако стоило со временем появиться новой технологии SATA и завоевать гигантскую популярность на рынке, как стандартный ATA был переименован в PATA (Parallel ATA) во избежание путаниц.

Крайне медленный и совсем уж сырой по своим техническим возможностям, этот интерфейс в годы своей популярности мог пропускать от 100 до 133 мегабайта в секунду. И то лишь в теории, т. к. в реальной практике эти показатели были ещё скромнее. Конечно же, более новые интерфейсы и разъемы жестких дисков покажут ощутимое отставание IDE от современных разработок.

Думаете, не стоит преуменьшать и привлекательных сторон? Старшие поколения наверняка помнят, что технические возможности PATA позволяли обслуживать сразу два HDD при помощи только одного шлейфа, подключаемого к материнской плате. Но пропускная способность линии в таком случае аналогично распределялась пополам. И это уже не упоминая ширины провода, так или иначе препятствующую своими габаритами потоку свежего воздуха от вентиляторов в системном блоке.

К нашему времени IDE уже закономерно устарел как в физическом, так и в моральном плане. И если до недавнего времени этот разъём встречался на материнских платах низшего и среднего ценового сегмента, то теперь сами производители не видят в нём какой-либо перспективы.

Всеобщий любимец SATA

На длительное время IDE стал наиболее массовым интерфейсом работы с накопителями информации. Но технологии передачи и обработки данных долго на месте не застаивались, предложив вскоре концептуально новое решение. Сейчас его можно встретить практически у любого владельца персонального компьютера. И название ему - SATA (Serial ATA).

Отличительные особенности этого интерфейса - параллельная низкое энергопотребление (сравнительно с IDE), меньший нагрев комплектующих. За всю историю своей популярности SATA пережил развитие в три этапа ревизий:

  1. SATA I - 150 мб/c.
  2. SATA II - 300 мб/с.
  3. SATA III - 600 мб/с.

К третьей ревизии также была разработана пара обновлений:

  • 3.1 - более усовершенствованная пропускная способность, но всё так же ограниченная лимитом в 600 мб/с.
  • 3.2 со спецификацией SATA Express - успешно реализованное слияние SATA и PCI-Express устройств, позволившее увеличить скорость чтения/записи интерфейса до 1969 мб/с. Грубо говоря, технология является «переходником», который переводит обычный режим SATA на более скоростной, которым и обладают линии PCI-разъёмов.

Реальные же показатели, разумеется, явно отличались от официально заявленных. В первую очередь это обуславливает избыточная пропускная способность интерфейса - многим современным накопителям те же 600 мб/с излишне, т. к. они изначально не разработаны для работы на такой скорости чтения/записи. Лишь с течением времени, когда рынок постепенно будет полниться высокоскоростными накопителями с невероятными для сегодняшнего дня показателями скорости работы, технический потенциал SATA будет задействован в полном объёме.

И наконец, были доработаны многие физические аспекты. SATA рассчитан на использование более длинных кабелей (1 метр против 46 сантиметров, которыми подключались жесткие диски с разъемом IDE) с гораздо компактными размерами и приятным внешним видом. Обеспечена поддержка «горячей замены» HDD - подключать/отсоединять их можно и без отключения питания компьютера (правда, предварительно всё же необходимо активировать режим AHCI в BIOS).

Возросло и удобство подключения шлейфа к разъёмам. При этом все версии интерфейса обратно совместимы друг с другом (жёсткий диск SATA III без проблем подключается к II на материнской плате, SATA I - к SATA II и т. д.). Единственный нюанс - максимальная скорость работы с данными будет ограничена наиболее «старым» звеном.

Обладатели старых устройств также не останутся в стороне - существующие переходники с PATA на SATA переменно спасут от более дорогостоящей покупки современного HDD или новой материнской платы.

External SATA

Но далеко не всегда стандартный жёсткий диск подходит под задачи пользователя. Бывает необходимость в хранении больших объёмов данных, которым требуется использование в разных местах и, соответственно, транспортировка. Для таких случаев, когда с одним накопителем приходится работать не только лишь дома, и разработаны внешние жёсткие диски. В связи со спецификой своего устройства, им требуется совсем другой интерфейс подключения.

Таковым является ещё разновидность SATA, созданной под разъемы внешних жестких дисков, с приставкой external. Физически этот интерфейс не совместим со стандартными SATA-портами, однако при этом обладает аналогичной пропускной способностью.

Присутствует поддержка «горячей замены» HDD, а длина самого кабеля увеличена до двух метров.

В изначальном варианте eSATA позволяет лишь обмениваться информацией, без подачи в соответствующий разъем внешнего жесткого диска необходимой электроэнергии. Этот недостаток, избавляющий от необходимости использования сразу двух шлейфов для подключения, был исправлен с приходом модификации Power eSATA, совместив в себе технологии eSATA (отвечает за передачу данных) с USB (отвечает за питание).

Универсальная последовательная шина

Фактически став наиболее распространённым стандартом последовательного интерфейса подключения цифровой техники, Universal Serial Bus в наши дни известен каждому.

Перенеся долгую историю постоянных крупных изменений, USB - это высокая скорость передачи данных, обеспечение электропитанием беспрецедентное множество периферийных устройств, а также простота и удобство в повседневном использовании.

Разрабатываемый такими компаниями, как Intel, Microsoft, Phillips и US Robotics, интерфейс стал воплощением сразу нескольких технических стремлений:

  • Расширение функционала компьютеров. Стандартная периферия до появления USB была достаточно ограничена в разнообразии и под каждый тип требовался отдельный порт (PS/2, порт для подключения джойстика, SCSI и т. д.). С приходом USB задумывалось, что он и станет единой универсальной заменой, существенно упростив взаимодействие устройств с компьютером. Более того, предполагалось также этой новой для своего времени разработкой стимулировать появление нетрадиционных периферийных устройств.
  • Обеспечить подключение мобильных телефонов к компьютерам. Распространяющая в те годы тенденция перехода мобильных сетей на цифровую передачу голоса выявила, что ни одни из разработанных тогда интерфейсов не мог обеспечить передачу данных и речи с телефона.
  • Изобретение комфортного принципа «подключи и играй», пригодные для «горячего подключения».

Как и в случае с подавляющим большинством цифровой техники, USB-разъем для жесткого диска за долгое время стал полностью привычным для нас явлением. Однако в разные года своего развития этот интерфейс всегда демонстрировал новые вершины скоростных показателей чтения/записи информации.

Версия USB

Описание

Пропускная способность

Первый релизный вариант интерфейса после нескольких предварительных версий. Выпущен 15 января 1996 года.

  • Режим Low-Speed: 1.5 Мбит/с
  • Режим Full-Speed: 12 Мбит/с

Доработка версии 1.0, исправляющая множество её проблем и ошибок. Выпущенная в сентябре 1998 года, впервые получила массовую популярность.

Выпущенная в апреле 2000 года, вторая версия интерфейса располагает новым более скоростным режимом работы High-Speed.

  • Режим Low-Speed: 1.5 Мбит/с
  • Режим Full-Speed: 12 Мбит/с
  • Режим High-Speed: 25-480 Мбит/с

Новейшее поколение USB, получившее не только обновлённые показатели пропускной способности, но и выпускаемая в синем/красном цвете. Дата появления - 2008 год.

До 600 Мбайт в секунду

Дальнейшая разработка третьей ревизии, вышедшая в свет 31 июля 2013 года. Делится на две модификации, которые могут обеспечить любой жёсткий диск с USB-разъёмом максимальной скорость до 10 Гбит в секунду.

  • USB 3.1 Gen 1 - до 5 Гбит/с
  • USB 3.1 Gen 2 - до 10 Гбит/с

Помимо этой спецификации, различные версии USB реализованы и под разные типы устройств. Среди разновидностей кабелей и разъёмов этого интерфейса выделяют:

USB 2.0

Стандартный

USB 3.0 уже мог предложить ещё один новый тип - С. Кабели этого типа симметричны и вставляются в соответствующее устройство с любой стороны.

С другой стороны, третья ревизия уже не предусматривает Mini и Micro «подвиды» кабелей для типа А.

Альтернативный FireWire

При всей своей популярности, eSATA и USB - ещё не все варианты того, как подключить разъем внешнего жесткого диска к компьютеру.

FireWire - чуть менее известный в народных массах высокоскоростной интерфейс. Обеспечивает последовательное подключение внешних устройств, в поддерживаемое число которых также входит и HDD.

Его свойство изохронной передачи данных главным образом нашло своё применение в мультимедийной технике (видеокамеры, DVD-проигрыватели, цифровая звуковая аппаратура). Жёсткие диски им подключают гораздо реже, отдавая предпочтение SATA или более совершенному USB-интерфейсу.

Свои современные технические показатели эта технология приобретала постепенно. Так, исходная версия FireWire 400 (1394a) была быстрее своего тогдашнего главного конкурента USB 1.0 - 400 мегабит в секунду против 12. Максимально допустимая длина кабеля - 4.5 метра.

Приход USB 2.0 оставил соперника позади, позволяя обменивать данные со скоростью 480 мегабит в секунду. Однако с выходом нового стандарта FireWire 800 (1394b), позволявший передавать 800 мегабит в секунду с максимальной длинной кабеля в 100 метров, USB 2.0 на рынке была менее востребована. Это спровоцировало разработку третьей версии последовательной универсальной шины, расширившей потолок обмена данных до 5 гбит/с.

Кроме этого, отличительной особенностью FireWire является децентрализованность. Передача информации через USB-интерфейс обязательно требует наличие ПК. FireWire же позволяет обмениваться данными между устройствами без обязательного привлечения компьютера к процессу.

Thunderbolt

Своё видение того, какой разъем жесткого диска должен в будущем стать безоговорочным стандартом, показала компания Intel совместно с Apple, представив миру интерфейс Thunderbolt (или, согласно его старому кодовому названию, Light Peak).

Построенная на архитектурах PCI-E и DisplayPort, эта разработка позволяет передавать данные, видео, аудио и электроэнергию через один порт с по-настоящему впечатляющей скоростью - до 10 Гб/с. В реальных тестах этот показатель был чуть скромнее и доходил максимум до 8 Гб/с. Тем не менее даже так Thunderbolt обогнал свои ближайшие аналоги FireWire 800 и USB 3.0, не говоря уже и о eSATA.

Но столь же массового распространения эта перспективная идея единого порта и коннектора пока что не получила. Хотя некоторыми производителями сегодня успешно встраиваются разъемы внешних жестких дисков, интерфейс Thunderbolt. С другой стороны, цена за технические возможности технологии тоже сравнительно немалая, поэтому и встречается эта разработка в основном среди дорогостоящих устройств.

Совместимость с USB и FireWire можно обеспечить при помощи соответствующих переходников. Такой подход не сделает их более быстрыми в плане передачи данных, т. к. пропускная способность обоих интерфейсов всё равно останется неизменной. Преимущество здесь только одно - Thunderbolt не будет ограничивающим звеном при подобном подключении, позволив задействовать все технические возможности USB и FireWire.

SCSI и SAS - то, о чём слышали далеко не все

Ещё один параллельный интерфейс подключения периферийных устройств, сместивший в один момент акцент своего развития с настольных компьютеров на более широкий спектр техники.

«Small Computer System Interface» был разработан чуть ранее SATA II. К моменту выхода последнего, оба интерфейса по своим свойствам были практически идентичными друг другу, способные обеспечить разъем подключения жесткого диска стабильной работой с компьютеров. Однако SCSI использовал в работе общую шину, из-за чего с контроллером могло работать лишь одно из подключённых устройств.

Дальнейшая доработка технологии, которая приобрела новое название SAS (Serial Attached SCSI), уже была лишена своего прежнего недостатка. SAS обеспечивает подключение устройств с набором управляемых команд SCSI по физическому интерфейсу, который аналогичен тому же SATA. Однако более широкие возможности позволяют подключать не только лишь разъемы жестких дисков, но и многую другую периферию (принтеры, сканеры и т. д.).

Поддерживается «горячая замена» устройств, расширители шины с возможностью одновременного подключения нескольких SAS-устройств к одному порту, а также предусмотрена обратная совместимость с SATA.

Перспективы NAS

Интереснейший способ работы с большими объёмами данных, стремительно набирающий популярность в кругах современных пользователей.

Или же сокращённо NAS представляют собой отдельный компьютер с некоторым дисковым массивом, который подключен к сети (зачастую к локальной) и обеспечивает хранение и передачу данных среди других подключённых компьютеров.

Выполняя роль сетевого хранилища, к другим устройствам этот мини-сервер подключается по обыкновенному Ethernet-кабелю. Дальнейший доступ к его настройкам осуществляется через любой браузер с подключением к сетевому адресу NAS. Имеющиеся данные на нём можно использовать как по Ethernet-кабелю, так и при помощи Wi-Fi.

Эта технология позволяет обеспечить достаточно надёжный уровень хранения информации и предоставлять к ней удобный лёгкий доступ для доверенных лиц.

Особенности подключения жёстких дисков к ноутбукам

Принцип работы HDD со стационарным компьютером предельно прост и понятен каждому - в большинстве случаев требуется соответствующим кабелем соединить разъемы питания жесткого диска с блоком питания и аналогичным образом подключить устройство к материнской плате. При использовании внешних накопителей можно вообще обойтись всего одним шлейфом (Power eSATA, Thunderbolt).

Но как правильно использовать разъемы жестких дисков ноутбуков? Ведь иная конструкция обязывает учитывать и несколько иные нюансы.

Во-первых, для подключения накопителей информации прямиком «внутрь» самого устройства следует учитывать то, что форм-фактор HDD должен быть обозначен как 2.5”

Во-вторых, в ноутбуке жесткий диск подсоединяется к материнской плате напрямую. Без каких-либо дополнительных кабелей. Достаточно просто открутить на дне предварительно выключенного ноутбука крышку для HDD. Она имеет прямоугольный вид и обычно крепится парой болтов. Именно в ту ёмкость и нужно помещать устройство хранения.

Все разъемы жестких дисков ноутбуков абсолютно идентичны своим более крупным «собратьям», предназначенных для ПК.

Ещё один вариант подключения - воспользоваться переходником. К примеру, накопитель SATA III можно подключить к USB-портам, установленным на ноутбуке, при помощи переходного устройства SATA-USB (на рынке представлено огромное множество подобных устройств для самых разных интерфейсов).

Достаточно лишь подсоединить HDD к переходнику. Его, в свою очередь, подключить к розетке 220В для подачи электропитания. И уже кабелем USB соединить всю эту конструкцию с ноутбуком, после чего жесткий диск будет отображаться при работе как ещё один раздел.

Ассортимент жестких дисков настолько огромен, что разобраться, какой винчестер выбрать для той или иной задачи, бывает очень непросто. Поэтому я попробовал написать своего рода краткий путеводитель по миру жестких дисков, в котором расскажу о направлениях развития индустрии “винтов” и дам примеры использования тех или иных моделей.

Я не будут особенно глубоко вдаваться в историю и повествовать обо всем, что было изобретено и реализовано за более чем полувековую историю, а расскажу преимущественно о том, с чем может столкнуться современный пользователь, придя в магазин или заглянув в системный блок.

Со времени создания первого HDD (Hard Disk Drive) многое изменилось. Напомню, что за столь долгий срок неизменным остался лишь принцип работы – вращающиеся намагниченные пластины и считывающие с них информацию головки – именно это объединяет все модели.


Количество производителей винчестеров постоянно сокращается – постоянные поглощения и слияния привели к тому, что производителей осталось всего трое – Western Digital, Seagate и Toshiba, причем на первые два приходится более 90% доли рынка. С другой стороны, количество моделей, отличающихся размерами и техническими характеристиками, постоянно растет.


Seagate, Western Digital, Toshiba - все, кто сумел выжить в тяжелой конкурентной борьбе

А все потому, что область применения становится все шире, а требования все жестче. Появляются модификации особого назначения для эксплуатации в разных устройствах помимо компьютера.

Форм-фактор 3,5 и 2,5 дюйма.

Все многообразие винчестеров можно условно разбить на две большие категории, определяемые размерами (шириной) устройства в дюймах. Другими словами, существуют так называемые “большие” жесткие диски – 3,5 дюйма, и маленькие – 2,5 дюйма. Чем больше накопитель, тем больше размер каждой пластины в нем, и тем больше информации помещается на устройстве.

Максимальный объем «больших» хардов достиг 10 Тбайт, в то время как у большинства «мелких» емкость ограничилась одним терабайтом (в продаже можно найти модели и на 2 Тбайт – он они слишком дороги).


Сравнение двух- и трехдюймовых HDD.
Разница в размерах и весе видна невооруженным глазом.
Также отличаются тепловыделение, уровень шума и энергопотребление

Первая группа (3,5 дюйма) используется в обычных стационарных компьютерах. В любом десктопе стоит именно такое устройство, на котором и хранятся как операционная система, так и файлы пользователя – изображения, видео, музыка и документы.

«Малышей» же устанавливают преимущественно в ноутбуки. Благодаря своим размерам, они не занимают много места, не сильно утяжеляют портативный ПК, а, кроме того, потребляют мало энергии, продлевая время работы от аккумулятора.

Однако “мелким винчестерам” находится и дополнительное применение – они часто используются в домашних медиаплеерах, позволяя записать огромное количество видео- и аудиоматериалов, во внешних жестких дисках, подключаемых напрямую к компьютеру (DAS), а также в сетевых файловых хранилищах (NAS).


NAS - типичный пример использования винчестера.
Данное файловое хранилище подключется по сети и несет в себе 4 жестких диска

Здесь мы подходим ко второму немаловажному отличию между этими группами – энергоэффективности. Если крохотные двухдюймовые устройства при нагрузке потребляют в пределах 2-2,5 Ватт (а на холостом ходу вообще меньше Ватта), то старшие собраться более прожорливы и могут кушать около 7-10 Ватт.

Это качество позволяет мелким собратьям обходится без внешнего источника питания, они запитываются прямо от USB-порта компьютера или даже смарфона (а также планшета). Напомню, что порт USB 2.0 при напряжении 5 Вольт выдает ток в 0,5 Ампера, то есть мощность, выдаваемая портом, составляет 2,5 Ватта (или 4,5 Ватта для USB 3.0).


Пример внешнего жесткого диска.
Для подключения используется порт USB.
Внутри находится 2,5-дюймовый винчестер

Именно по этой причине «малыши» очень часто используются во внешних винчестерах – мощности USB порта достаточно, чтобы прокормить устройство. То есть, такой накопитель самодостаточное устройство – ему требуется только короткий шнур для связи в компьютером.

А вот при использовании трехюймовых накопителей внешнее питание обязательно. Поэтому они мало подходят для удобной транспортировки – мало того, что в карман не положишь, так еще надо будет внешний блок питания носить с собой, а ведь он, порой, занимает места больше чем само устройство. Этим и объясняется популярность применения ноутбучных винчестеров в качестве портативных накопителей.


Внешний HDD 3,5 дюйма.
Блок питания по размерам сопоставим с самим устройством.
Ни о какой компактности и речи быть не может

Мультимедиа плееры используют оба класса. Но при этом компактные модели содержат 2,5-дюймовые винчестеры – это не только значительно уменьшает габариты, но и снижает энергопотребление, шум и вибрацию, что немаловажно при просмотре кино или прослушивании музыки. Если нужен бесшумный медиаплеер или хранилище – то такие винчестеры самый подходящий выбор.


Медиалеер - позволяет смотреть видео и слушать музыку.
Подключается к телевизору и имеет пульт.
Но внутри тот же винчестер 3,5 дюйма

Третье важное качество – вес. “Взрослые” модели весят довольно много, поэтому их применение исключено в портативных устройствах, жестких дисках, камерах, ноутбуках и т. д., в то время как “малыши” не оттягивают карман и не слишком утяжеляют технику.

Лилипуты 1,8 дюймов.

Также существуют и крохотные модели форм-фактора 1,8 дюйма. Их емкость еще меньше, но цена достаточно высока. Поэтому применялись они только там, где требуется исключительная компактность. Например, в портативных mp4 плеерах. Правда в связи с бурным развитием flash-памяти они все менее и менее востребованы. А в настоящий момент почти вытеснены флэшем.


Крохотный винчестер 1,8 дюйма (второй сверху).
Не выдержал конкуренции и вытестнен флэшем.
Снизу HDD 3,5 дюйма, на нем - HDD 2,5 дюйма

Интерфейсы SATA и IDE

Простым языком, интерфейс – это разъемы с помощью которых происходит подключение к материнской плате компьютера или к другому устройству.

Интерфейс IDE

Довольно древнее средство подключения жестких дисков. В продаже уже не найти таких HDD – они давно сняты с производства, однако на некоторых не самых новых моделях компьютеров все еще можно встретить такие винчестеры.

Отличаются тем, что через один кабель (шлейф) подключается два устройства. Причем на самих HDD перемычками (джамперами) требовалось выставлять какое устройство будет первичным, а какое вспомогательным. Старожилы отлично помнят, сколько нервов потрачено на правильную установку джамперов.


Шлейф для подключения двух IDE винчестеров к материнской плате

Максимальная пропускная способность – 133 Мбайт/с – современные модели уже давно превысили эту отметку. Как подключить такое устройство к современным платам, не обладающим соответствующим разъемом, можно прочитать в статье Как подключить старый IDE жесткий диск к новому компьютеру

Интерфейс SATA

Современный интерфейс подключения. Каждый винчестер соединяется отдельным кабелем, что избавляет от возни с настройкой (как в IDE). Кроме того, пропускная способность интерфейса значительно выше. Существуют несколько версий SATA, отличающихся только скоростью .


Подробная информация о том, как выглядят разъемы есть в статье “Как подключить жесткий диск к компьютеру ”.

Причем, если у IDE винчестеров 2-х и 3-х дюймовые экземпляры имели разные, не совместимые друг с другом разъемы, то у SATA оба класса устройств используют идентичные штекеры.

Толщина жесткого диска

В то время как у 3,5-дюймовых жестких дисков толщина важной роли не играет, у младших собратьев она имеет важное значение. Номинально ее значение у ноутбучных винчестеров составляет 9,5 мм.

Толщина HDD определяется количеством магнитных пластин. Чем больше пластин, тем больше емкость винчестера, но тем толще получится конечное устройство.

Портативные диски обычно несут от одной до трех пластин (“Большие диски” – трех до пяти пластин). Поэтому их толщина может варьироваться от 7 мм (с одной пластиной) до 12,5 мм (с тремя пластинами).

Стандартный и самый распространенный вариант – 9,5 мм при двух пластинах. Именно они используются в большинстве ноутбуков. При покупке более толстой (и более емкой) модели можно столкнуться с невозможностью установки в лэптоп – винчестер просто не поместится в соответствующем отсеке.


Сравнение моделей с толщиной 12,5 и 9,5 мм.
У первого на одну пластину больше.
В остальном модели не отличаются

Поэтому при покупке устройства для замены в ноутбуке обязательно нужно смотреть на толщину. Более того, в ультрабуках, отличающихся компактностью, устанавливаются диски толщиной всего 7 мм.

Но индустрия не стоит на месте, и производители уже представили винчестеры толщиной всего 5 мм (с одной пластиной). Но они только появляются на рынке и достаточно дороги.


С другой стороны, в портативных внешних винчестерах нет смысла гоняться за толщиной, поэтому в них иногда ставят харды 12,5 мм. При этом емкость может доходить до полутора и даже до двух терабайт.

Скорость вращения винчестеров.

Еще один важный момент, на который нужно обратить внимание при покупке винчестера – скорость вращения шпинделя (и пластин). У «медленных» моделей она находится в диапазоне 5200-5900 об/мин (стандартно – 5400 об/мин).

Такие модели не сильно греются, не шумят, почти не обладают вибрацией, однако и производительность их относительно невысока. Основное назначение – компьютеры и устройства со слабым или отсутствующим охлаждением, а также системы, главным требованием к которым является тишина – например медиацентры и плееры.

Более скоростная группа с частотой 7200 об/мин обладает более высокой производительностью, однако греется и шумит значительно выше. Но главной проблемой при домашнем использовании таких моделей является вибрация, о которой чуть ниже. Ранее на такие винчестеры устанавливалась операционная система – высокая скорость вращения обеспечивала низкое время доступа к информации, что положительно сказывалось отзывчивости системы.

Следующая группа винчестеров – 10 000 об/мин и более – экстремальная линейка жестких дисков, обладающая крайне высокой производительностью. Тепловыделение настолько высокое, что такие диски требуют отдельного радиатора.


Но с появлением SSD необходимость в винчестерах с высокой частотой вращения в домашнем секторе практически отпала. Система ставится на твердотельник, а данные хранятся на традиционном диске. Использование быстрых дисков оправдано лишь в корпоративном сегменте, где требования к шуму и вибрации невысоки, там на них по прежнему большой спрос.

Надо заметить, что модели последней группы особенно быстро вытесняются SSD. Скорость трердотельников несоизмеримо выше, даже по сравнению с самыми быстрыми образцами винчестеров - про это можно прочитать в статье Сравнение скоростей SSD и HDD . При этом они полностью бесшумны, потребляют меньше электричества и почти не греются, а цена на них зачастую даже ниже «быстрых HDD».


Результаты теста для SSD Vertex 3 и HDD Seagate 3 Тбайт.
Производительность SSD значительно выше

Благодаря развитию технологий и росту плотности записи на пластинах скорость чтения «тихоходных моделей» перевалила за 150-160 Мбайт/с, что выше чем у самых резвых экземпляров 1- или 2-летней давности. Так что медленным их можно называть только условно.

Емкость HDD

Особенность существующего положения на рынке заключатся в том, что ввиду технологических сложностей скорость роста емкости накопителей постоянно замедляется, поэтому не стоит в скором времени ждать огромного прироста, как это было ранее.

На данный момент максимум у 3,5-дюймовых винчестеров – 10 Тбайт, но самыми оптимальными по цене за гигабайт являются пятитерабайтные модели.

У ноутбучных винчестеров все намного проще. Если отбросить экзотические модели, то оптимальный объем – 1 Тбайт, и он же является максимальным в стандартном корпусе 9,5 мм. Для большинства целей – такого диска хватит с лихвой.

Уровень шума и вибрация

Часто одним из главных требований к эксплуатации дома является комфорт. Как бы странно это ни звучало, но на первое место по важности выходит низкий уровень шума, издаваемого накопителями.

Модели с низкой частотой вращения шпинделя обычно работают намного тише своих быстрых собратьев, которые издают постоянный низкочастотный свист. Кроме того, вибрация передается на корпус компьютера (или другого устройства), поэтому при работе двух и более устройств с высокой частотой в одном корпусе вибрация многократно усиливается.

Вам наверняка приходилось слышать раздражающий низкочастотный гул, издаваемый корпусом. Виновником являются именно быстрые HDD, работающие в паре (и большем количестве). Наилучшим решением является использование экономичных низкооборотистых моделей.

Температура и стабильное питание

Современные накопители – очень сложные электронные устройства, их долговечность сильно зависит от условий эксплуатации. Во-первых, диски (прежде всего 3,5-дюймовые) необходимо правильно охлаждать. Забившийся пылью радиатор в ноутбуке или неправильная организация движения потоков воздуха в десктопе могут привести к работе при повышенных температурах, что значительно сокращает срок жизни HDD.


Дополнительное охлаждение от Zalman.
Позволяет снизить температуру на 5-7 градусов.
Очень эффективное cредство в корпусах с плохой вентиляцией

Комфортная температура для накопителя – ниже 40 градусов. Диапазон 40-45 еще терпим, хоть и нежелателен. Крайне не рекомендуется использовать диск при более высоких температурах.

Посмотреть температуру можно штатными утилитами или сторонними программами, например, HD Tune или CrystalDiskInfo (обе бесплатные).


Второй немаловажный момент – стабильное питание – более актуален для стационарных компьютеров. Старый блок питания с подсохшими элементами, не сглаживающий скачки напряжения, может являться причиной выхода из строя винчестера.

Мне много раз приходилось слышать от покупателей много нелестных отзывов о производителях HDD, например, когда “умирают” два купленных подряд диска, но причина в конечном итоге оказывалась в некачественном или старом блоке питания, после замены которого все приходило в норму.

Гибриды

Рассказ был бы неполным без упоминания о гибридах. Это такой тип HDD в котором традиционный диск дополняется накопителем на flash-памяти небольшой емкости (за счет чего цена хоть и выше, но ненамного). Флэш-диск содержит самые частоиспользуемые файлы (или блоки) жесткого диска, повышая производительность. Емкость гибрида такая же, как и у обычных HDD, и намного больше объема SSD.

Но, по моему мнению, гибриды не особенно прижились. Если нужна экономия денег – лучше вообще обойтись без SSD, а если нужна производительность, лучше купить полноценный твердотельник.

Единственно место, где использование гибридов оправдано – в ноутбуках, они имеют только один отсек для накопителя и установить два устройства сразу не выйдет.

При использовании 3,5-дюймовых винчестеров я рекомендую использовать накопители серии Green производства Western Digital, работающие почти бесшумно, а для NAS (и медиалееров), а также при совместном применении двух и более накопителей, я рекомендую остановиться на серии Red этого же производителя.


Western Digital серии Red.
Замечательный представитель бесшумных винчестеров.

Вибрация в линейке Red сведена к минимуму, благодаря чему даже при одновременной работе четырех экземпляров вибрация и раздражающий низкочастотный гул будут незаметны.

Среди ноутбучных винчестеров довольно неплохи Hitachi серии Travelstar и WD серии Scorpio Blue. Важно лишь не забывать про толщину устройств в случае замены HDD на аналогичный большей емкости.

Устройства Seagate также неплохи, но обычно они чуть дороже (для 3,5 дюймовых моделей), и уровень шума у них чуть выше.

И не забывайте про правильную эксплуатацию любых HDD, не давайте винчестеру перегреваться, иначе жизнь его будет слишком скоротечной.

Статья посвящается моему знакомому,
который купил для домашнего компьютера
хард Seagate Cheetah UWSCSI.

На сегодняшний день существует огромное количество различных технологий и интерфейсов жестких дисков. Количество иностранных и непонятных словечек, засоряющих великий и могучий язык продавцов компьютерной техники все время растет, и, придя в магазин за новым хардом, вы можете услышать столько всего. Например: IDE, ATA, Serial ATA, SCSI, SCSI II, Wide SCSI II, Ultra SCSI II, Ultra Wide SCSI II, Ultra2 SCSI, Ultra160 SCSI, Fibre Channel, IEEE 1394, FireWire, iLink, USB, RAID, 5400rpm, 7200rpm, 10,000rpm, 15,000rpm… Ну как? Ушки уже аплодируют? Так что эта статья должна помочь вам разобраться в том, какое же устройство из тех, что вам попытается всучить продавец, действительно стоит покупать. Надеюсь, решение вы примите правильное.

И учтите. Эта статья не только для великих, супер-пупер компьютерщиков. И даже совсем не для них. Они то все уже знают. Эта статья рассчитана на среднестатического покупателя жесткого диска, который мало что понимает во всех вышеперечисленных терминах. Предположим, вы собираете новый или модернизируете старый компьютер. Задумались о винчестере SCSI, но знаете про этот интерфейс крайне мало, а еще слышали что-то, возможно даже хорошее, про IEEE 1394, но с чем его едят, совершенно не представляете. Тогда вы попали по адресу.

Интерфейсы.

Перво-наперво надо подумать про то, диск с каким интерфейсом вы будете покупать. Твердо остановились на IDE? А как насчет SCSI, IEEE 1394 или USB? В зависимости от интерфейса жесткие диски могут различаться по скоростным характеристикам, стоимости, длине кабелей, гибкости и надежности, да мало ли еще по чему. Так что с интерфейсов мы и начнем.

IDE/ATA

IDE (Integrated Drive Electronics) - это название типа жестких дисков, имеющих интерфейс ATA (AT Attachment). Дешевая электроника IDE в сочетании с параллельной передачей данных ATA позволяет производить жесткие диски, приобретение которых не пустит вас по миру. Тем не менее, не стоит забывать, что ATA не предназначен для внешних подключений, и не любит кабелей длиной более 60см. То есть, такие ATA кабели можно купить, только вот использовать их я вам не советую.

Один канал ATA может поддерживать до двух дисков, первый - master и вторичный - slave. Очень часто, если не сказать, почти всегда, люди ставят на один канал жесткий диск как master и другое, более медленное устройство, типа CD-ROM, как slave. Но так как IDE может обращаться только к одному устройству на канале одномоментно, то таким образом снижается производительность системы в целом. Так что лучше не иметь slave-устройств в принципе. Тем более. Что сейчас все материнские платы имеют по два интегрированных канала IDE, а некоторые (типа любимой мною ABIT BX-133 RAID) и четыре. Просто подключите жесткий диск как master на первый канал, а DVD или CD-ROM как master на второй канал.

Сегодня на рынке присутствуют три основных стандарта IDE дисков: ATA/33, ATA/66 и ATA/100. В данном случае число показывает максимальную пропускную способность в мегабайтах в секунду. Только не забывайте, что для ATA/66 и ATA/100 требуется специальный ATA/66/100 80-контактный кабель, а со стандартным 40-контактным ваш ATA/66/100 диск будет работать как ATA/33. Как правило, такой кабель идет в комплекте со всеми материнскими платами, поддерживающими ATA/66/100. Эти три стандарта называют одним словом UDMA. И хотя это неверно, вам часто придется услышать, UDMA, ATA и IDE в виде взаимозаменяемых понятий.

Все IDE диски должны работать со всеми вариантами ATA. Диск ATA/100 должен отлично функционировать с контроллером ATA/33, а диск ATA/33 должен так же прекрасно работать с контроллером ATA/100. Но, понятно, что работать винчестер будет на скорости самого медленного компонента. В обоих, приведенных случаях это будет скорость ATA/33, то есть максимальная пропускная способность будет равна 33Мб/сек. Иногда можно наткнуться на некоторые несовместимости, типа, когда конкретный диск не желает работать с конкретным кабелем, или два диска от разных производителей не желают сосуществовать на одном канале контроллера. Ну, так электроника штука сложная. Чтобы удостовериться в этом, достаточно разобрать хард и посмотреть, где там внутри размещаются все эти гигабайты. Только такое лучше проделывать с "умершим" хардом, а не с тем, на котором хранится коллекция ваших любимых картинок и текстов про Винни Пуха.

На самом деле разница в производительности между ATA/33, 66 и 100 не так уж велика, так как разговор идет о пиковой пропускной способности, которая в реальной работе достигается крайне редко. Не существует дисков ATA/100 обеспечивающих передачу данных даже в 66Мб/сек, и очень мало таких. Что позволяют передачу в 33Мб/сек. Только кэш память жесткого диска может воспользоваться преимуществами повышенной пропускной способности. Но для этого размер кэша должен быть достаточно большим. А большинство IDE дисков имеет всего 512Кб кэш памяти, и только некоторые, те, что самые дорогие, могут похвастаться кэшом в 2 или даже 4 Мб.

Так что главным недостатком IDE по-прежнему остается малая скорость. Конечно. Современные IDE диски догнали по скоростным характеристикам старые модели SCSI дисков, но с новыми SCSI винчестерами ин все равно не сравниться. Можно приобрести достаточно быстрый IDE диск со скоростью вращения 7200 оборотов в минуту (rpm), но ведь можно купить и SCSI привод со скоростью 15,000rpm, который будет намного быстрее. А еще время наработки на отказ, заявляемое производителями, у IDE дисков гораздо меньше, чем у SCSI дисков. Возможно, это просто маркетинговые меры, но повсеместно бытует мнение, что SCSI устройства надежнее, чем IDE.

Тем не менее, даже диски со скоростью вращения 7200 оборотов на шпинделе, достаточно дороги. Большинство моделей присутствующих на нашем рынке имеют скорость вращения 5400rpm. Такие диски стоят дешевле на 30-40 долларов и производят меньше шума, но производительность у них меньше. Хотя для домашнего использования, это то, что нужно.

Будущее ATA, скорее всего. Лежит на пути перехода к стандарту Serial ATA. Serial ATA будет иметь кабель со всего двумя контактами (один на прием, один на передачу), и должен обеспечить IDE пропускную способность до 1.5Гбит/сек, а возможно и больше. Это вдвое перекрывает пропускную способность ATA/100, у которого контактов в 40 раз больше. Единственной отрицательной стороной Serial ATA является то, что на одном канале может быть только одно устройство, но при наличии контроллера с несколькими каналами это не проблема.

Преимущества
  • Неплохая производительность за малые деньги
  • Широкая распространенность, и, следовательно, совместимость с большинством существующего оборудования.
Недостатки
  • Не самые скоростные диски
  • Жесткое ограничение по длине кабеля
  • Только внутренние

SCSI

SCSI давно стал стандартным интерфейсом для рабочих станций и серверов. И хотя по деньгам SCSI обходится существенно дороже IDE, за эти деньги мы получаем гораздо большую пропускную способность, поддержку большего количества устройств на одном канале, гораздо большую длину кабелей (до 12 метров), поддержку внешних устройств и многозадачность. Немало, не правда ли?

Обычная (иногда говорят "узкая") шина SCSI может нести на себе до 8 устройств, а широкая (wide) до 16. Сам SCSI контроллер занимает один адрес, а остальные 15 оставляет для подключаемых устройств (соответственно на узкой шине для устройств остается 7 адресов). Старшие адреса SCSI имеют больший приоритет. Это делает установку SCSI немного муторной. Обычно лучше дать больший приоритет медленным устройствам, типа CD-ROM, а не жестким дискам.

Существует множество различных вариантов SCSI. Мы о них уже писали, и всем, кто хочет изучить этот вопрос подробно, я рекомендую статью "Интерфейсы SCSI" . Из устройств доступных сейчас на рынке можно назвать Ultra, Ultra2 и Ultra160 SCSI. Ultra SCSI позволяет передачу 20Мб/сек и имеет 8 адресов. Широкая (wide) версия Ultra SCSI поднимает пропускную способность вдвое, то есть до 40Мб/сек. Ultra2 SCSI, известный так же как LVD (Low Voltage Differential) SCSI, имеет пропускную способность 40Мб/сек, и, соответственно, wide версия его дает нам 80Мб/сек. Ultra160 SCSI продолжает традицию удвоения пропускной способности, но бывает только в варианте wide, что дает нам 16 устройств на канале и 160Мб/сек.

SCSI устройства, как правило, обладают совместимостью, что называется, сверху вниз. Правда этого ни кто не гарантирует, но в большинстве случаев, скажем для примера, устройство SCSI-2 будет отлично себя чувствовать на контроллере Ultra2Wide SCSI. Правда при этом бывает, что при наличии на одной шине быстрого и медленного устройств оба начинают работать с максимальной скоростью медленного. А на самом деле, то, как будут вести себя разные SCSI устройства, подвешенные рядом, зависит в основном от контроллера.

Со SCSI часто возникают проблемы, касающиеся установки и первой настройки, особенно у тех, кто проделывает это первый раз. Все эти терминаторы, идентификаторы могут вызвать серьезную головную боль. В то же самое время, все эти проблемы с лихвой окупаются надежностью данного интерфейса. А появление активных терминаторов (к роботам из будущего отношения не имеют) заметно упростило установку SCSI устройств. Так что радуйтесь, раньше было хуже.

Главное преимущество, главная сила SCSI выражается емким иностранным словом high-end, то есть самые быстрые, самые объемистые жесткие диски имеют интерфейс SCSI. Seagate Cheetah с 15,000 оборотов на шпинделе в варианте IDE никогда не производился и вряд ли будет. Ну а способность поддерживать до 15 устройств на одном канале говорит об отличной масштабируемости, что для определенных целей тоже крайне важно.

Мир SCSI настолько обширен, что это тема даже не для одной статьи, поэтому прежде чем поставить жирную точку в данном разделе скажу всего несколько еще слов о будущем.

А будущее SCSI уже расписано как по нотам. Уже появляются первые устройства Ultra320, и следующим шагом будет Ultra640. Сам стандарт SCSI изначально предполагал масштабируемость, и стал масштабируем настолько, что вряд ли что-то может с ним сравниться в этом.

Преимущества
  • Большая производительность
  • Большие объемы
  • Возможность подключения, как внутренних устройств, так и внешних
Недостатки
  • Дороговизна
  • Возможны проблемы при установке

Fibre Channel (оптоволоконный канал)

Fibre channel - это интерфейс, в корне отличающийся от SCSI и IDE. Вообще он ближе к Ethernet и InfiniBand, если это вам что-то говорит. А если нет, то уясните себе следующее, этот интерфейс предназначен не только для того, что бы подсоединять харды и всякую-прочую периферию к системе, а в первую очередь для организации сетей, объединения удаленных друг от друга массивов жестких дисков, и прочих операций требующих высокой пропускной способности в сочетании с большими расстояниями. Fibre channel часто используется для соединения SCSI RAID массивов с сетью рабочей группы либо сервером.

Существующие технологии позволяют пропускную способность Fibre channel в 100Мбит/сек, а теоретический предел данной технологии лежит где-то в районе 1.06Гбит/сек. При этом уже сейчас ряд компаний занят разработкой устройств с пропускной способностью до 2.12Гбит/сек, но это уже следующее поколение интерфейса Fibre channel. На сегодняшнем рынке так же присутствуют решения, когда для достижения супер-большой пропускной способности используется целый ряд каналов Fibre channel одновременно.

В отличие от SCSI, Fibre channel обладает гораздо большей гибкостью. Если SCSI ограничивается всего 12 метрами, то Fibre channel позволяет соединения протяженностью до 10км при использовании оптического кабеля и несколько меньше при использовании относительно недорогих медных соединений, хотя недорогих именно относительно;-).

Преимущества
  • Очень хорошая масштабируемость
  • Очень большие расстояния соединений (до 10км)
  • Сеть из множества рабочих станций может работать с одним RAID массивом
Недостатки
  • Дорого
  • Очень дорого
  • Чем лучше, тем дороже

IEEE 1394

IEEE 1394, он же FireWire (как его назвала Apple), он же iLink (как его назвала Sony), реально становится стандартом для передачи цифрового видео, но так же может использоваться для подключения жестких дисков, сканеров, сетевого оборудования, цифровых камер, и всего, что требует хорошей пропускной способности. В настоящее время FireWire остается достаточно дорогим решением (по крайней мере, для рядового пользователя), но стандарт все больше проникает во все сферы компьютерной периферии и постоянно дешевеет.

FireWire способен поддерживать до 63 устройств на одном канале 400Мбит/сек. А IEEE 1394b, первая попытка серьезного пересмотра FireWire, будет поддерживать пропускную способность в 800Мбит/сек на канал. FireWire обеспечивает большую производительность, но внешние устройства с этим интерфейсом нуждаются в отдельном внешнем источнике питания.

Первые жесткие диски FireWire уже начинают появляться, и уже довольно давно существуют модели, использующие транслятор IDE/FireWire. А вот для видеокамер, сканеров и принтеров этот интерфейс используется уже очень широко. Так же на базе FireWire можно стоить производительные локальные сети. Многие модели компьютеров Apple имеют один или два FireWire порта, о вот на PC этот стандарт пока такого признания не получил.

Самой приятной особенностью FireWire является возможность "горячего" подключения. То есть, можно подключать и отключать FireWire устройства, не выключая компьютер. Но если таким устройством является жесткий диск, то операционная система должна уметь монтировать новые жесткие диски "на лету".

Будущее IEEE 1394 выглядит достаточно оптимистично, учитывая молодость этого стандарта, и уже почти готовую спецификацию 1394b, позволяющую удвоить пропускную способность. А признание данного стандарта дело недалекого будущего, популярность его растет с каждым днем, а цены, соответственно, падают.

Преимущества
  • "Горячее" подключение
  • Высокая пропускная способность
  • Отсутствие разделения устройств по приоритетам
Недостатки
  • Контроллеры жестких дисков стоят пока очень дорого

USB

USB 1 (Universal Serial Bus - Универсальная Последовательная Шина) стандарт получивший за последние несколько лет крайне широкое распространение. Сложно найти компьютер на котором не было бы поддержки USB (если только старый Pentium100). Данный интерфейс имеет два скоростных режима. Первый - "высокоскоростной" - обеспечивает пропускную способность в 12Мбит/сек и длину соединительных кабелей до 5 метров. Второй - низкоскоростной - пропускная способность 1.5Мбит/сек и длина кабелей до 3 метров. Понятно, что для жестких дисков данный стандарт малопригоден из-за своей "тормознутости", а вот для всяких устройств резервного копирования, CD-R, сканеров, сетевых устройств и устройств ввода вполне подходит.

На одном канале USB может присутствовать до 127 устройств, для чего могут использоваться устройства, пропускающие через себя сигнал, либо USB концентраторы. USB имеет, так называемый, мастер-контроллер, так что любой сигнал, передаваемый, скажем, от USB харда к USB CDR должен пройти через контроллер, а уже затем отправиться к требуемому устройству. Это здорово понижает пропускную способность при использовании нескольких USB устройств. Кроме того, USB устройства не могут быть разделяемыми (в сети, например), хотя два компьютера можно соединить между собой USB сетью через USB мост.

Зато, при всех своих минусах, USB позволяет "горячее" подключение. Правда операционная система все равно потребует у вас драйвер нового устройства, но перезагружать компьютер не придется. Хотя и это спорно. Мне, например, недавно попалась сетевая карта USB (удобное средство для подключения к сети опечатанного пломбой компьютера), так подключил-то я ее "по-горячему", а после установки драйверов Windows предложила перезагрузиться. Так что, как говориться, 100% даже морг не дает.

Ну, о будущем USB (по крайней мере, ближайшем) уже все известно. Этим будущим станет USB 2, и не когда-нибудь, а примерно в начале следующего года. USB 2 поднимет планку пропускной способности с 12 до 480Мбит/сек. Вот тогда и можно будет всерьез задуматься о жестком диске с интерфейсом USB 2. А пока в Сети идут дебаты, вытеснит USB 2 FireWire или оба стандарта найдут себя в разных областях компьютерной периферии.

Преимущества
  • Широкая распространенность
  • Низкая стоимость
  • "Горячее" подключение
Недостатки
  • Низкая эффективность для связи между устройствами
  • Низкая скорость (USB 2 это поправит)
  • Малая длина соединительных кабелей

Так выбирать то что?

На самом деле выбор уже определен вашей целью. Если вы собираете домашний компьютер для игр или для офисной работы, то IDE диск даст вам самую лучшую комбинацию цена/производительность. USB хорошо подойдет для внешнего CDR или ленточного накопителя для резервного копирования (если копировать не слишком много). Типа, дешево и сердито, зато переносит с места на место можно сколько угодно. Если вам нужен быстрый внешний диск для подключения к ноутбуку, или для регулярной переноски между несколькими компьютерами, и основным требованием помимо мобильности является производительность, то ваш выбор IEEE 1394. Если речь идет об оснащении серьезной рабочей станции или сервера, где критична надежность и производительность, то лучший выбор - SCSI, особенно в форме RAID, хотя и стоит это ух как кусаче. Ну а если вы формируете кластер автоматизированных рабочих мест, которым необходим высокоскоростной доступ к большому массиву данных, то Fibre channel обеспечит вам скорость, удаленность рабочих мест от массива информации практически не имеет значения. Другая возможность заключается в создании сети Gigabit Ethernet, а для сервера, как правило выбирают решение RAID SCSI, ну или, для некритичных серверов, IDE RAID.

Так что такое RAID?

RAID расшифровывается как Redundant Array of Inexpensive Disks, или если по-русски - Избыточный Массив Недорогих Дисков (ага видел я эти недорогие, у меня весь комп стоит дешевле, чем харды в тех RAID-х). RAID преследует две основные цели, повысить скорость и/или надежность. Существует достаточно много типов RAID, но основные это RAID 0, 1 и 0+1. RAID 0 позволяет объединить объем двух дисков в единое целое, так что операционная система будет видеть их и использовать как один физический диск. RAID 1 позволяет создавать "зеркало", то есть информация пишется сразу как на первый, так и на второй диск, и в случае, если первый, основной, хард "умрет", то все данные на втором будут в целости и сохранности. Ну, и, наконец, RAID 0+1 использует одновременно два описанных выше режима (не забывайте, что при этом требуется как минимум четыре жестких диска, два сливаются в массив, и два используются для "зеркала"). Есть еще другие варианты RAID для повышения надежности хранения информации, типа четности, для проверки целостности данных.

А размер?

У вас что проблемы с определением того, сколько места вам понадобится? 10Гб - это том минимум, который можно сегодня приобрести. Хотя кое-где еще завалялись жесткие диски меньшего размера, но пока вы дочитаете эту статью, пока соберетесь что-то купить, их уже в продаже и не будет. Если вы увлекаетесь собиранием музыки MP3, скачивает множество видеофрагментов из Интернета (тогда у вас выделенная линия:-) и вам понадобится не меньше 20 или 30Гб. Ну а если хотите заняться созданием мультипликации, обработки видео и т.д., то 50-100Гб будет в самый раз.

Все прочитанное не надо принимать близко к сердцу. Криков типа "У меня маленький винчестер, и девочки в классе надо мною смеются" тоже не надо. Пройдет время, винчестер вырастет, и все будет хорошо.

Пишите мне на [email protected] , только не надо просит халявных винчестеров. все равно не дам:-).