Электронный термометр с беспроводным датчиком. Двухканальный термометр на микроконтроллере ATmega8 и датчиках DS18B20 Двухканальный термометр

Тип оборудования: Термометр, прибор теплового контроля, анализатор температуры.

Производитель: Россия

Серия: ТК-5

Модель: ТК-5.11

Описание: Прибор для измерения температуры и относительной влажности.

Гарантия на термометр контактный ТК-5.11: 24 мес.

Термометр контактный ТК-5.11 внесен в Госреестр средств измерений.

Назначение прибора:

Термометр контактный цифровой ТК-5.11 предназначен для измерения температуры различных сред, относительной влажности воздуха путем непосредственного контакта зонда с объектом измерения. Термометр является двухканальным прибором, предусматривающим работу одновременно двумя измерительными зондами. Состоят из электронного блока и сменных зондов. В качестве термочувствительных элементов в зондах используются преобразователи термоэлектрические (ТП) с НСХ по ГОСТ Р 8.585 . А в качестве измерительного элемента в зондах относительной влажности используются емкостные датчики влажности.

Функциональные возможности темометра ТК-5.11:

  • измерение одновременно влажности или температуры по двум каналам в любом сочетании одним прибором;
  • измерение температуры с разрешением 0.1 °С;
  • измерение влажности с разрешением 0,1%;
  • возможность смены зонда;
  • возможность вывода на экран температуры датчика термокомпенсации;
  • возможность вывода на экран температуры воздуха при использовании зонда влажности;
  • сохранение в памяти прибора измеренных значений температуры или влажности;
  • отображение среднего значения температуры или влажности за заданное количество измерений;
  • отображение максимального значения температуры или влажности (за заданное количество измерений);
  • отображение минимального значения температуры или влажности (за заданное количество измерений);
  • индикация напряжения питания;
  • задание граничных значений измеряемых температуры или влажности;
  • звуковая индикация при достижении заданных уровней измеряемых температур или влажности;
  • подсветка индикатора;
  • автоматическое отключение прибора через заданное время;
  • автоматическое сохранение при выключении текущего, усредненного, max, min, напряжения питания, остатка времени работы прибора на момент отключения.

Особенности термометра ТК-5.11:

  • Измерение влажности.
  • Одновременное измерение температуры и влажности.
  • Возможность работы со сменными зондами.
  • Двухканальный.
  • Питание от стандартных элементов питания типа АА.
  • Низкое энергопотребление (не менее 350 часов работы от одного комплекта батарей).

Технические характеристики термометра ТК-5.11:

Диапазон измеряемых температур, °С

100...+1800 (зависит от типа используемого зонда)

Относительная погрешность, %

±0,5 +ед.мл.разр

Цена единицы младшего разряда, °С

0,1

Количество типов сменных зондов

Диапазон измерения относительной влажности, %

3...97

Абсолютная погрешность измерения относительной влажности, %

Рабочие условия эксплуатации, °С

20...+50

Напряжение питания, В

1,5x2

Условия эксплуатации

температура окружающей среды, °С

20...+50

относительная влажность, %

не более 80 % при T = 35 °С

атмосферное давление, кПа

86 - 106

Область применения термометра ТК-5.01:

  • Теплоэнергетика и ПТО городского хозяйства. Энергоаудит помещений, температурный контроль качества коммунальных услуг, наладка тепловых режимов в котельных.
  • Промышленные предприятия. Контроль температуры деталей при сварочных работах, в металлургии, настройка температурных режимов при производстве строительных материалов и изделий из пластмассы, определение температуры форм в стекольной и кондитерской отраслях.
  • Пищевая промышленность. Температурный мониторинг техпроцессов варки, копчения, выпечки, производства дрожжей, солода и т.д.

Комплект поставки термометра ТК-5.01П:

  • термометр ТК-5.11
  • руководство по эксплуатации и паспорт
  • свидетельство о поверке
  • сумка-чехол

*Технические характеристики и комплект поставки приборов для контроля температуры могут быть изменены производителем без предварительного уведомления.

Дополнительную информацию по термометрам можно получить, обратившись к нашим специалистам, по телефонам, указанным разделе" контакты ".

Доставляем приборы для измерения температуры по всей России курьерскими службами и транспортными компаниями.

Рассказать в:

В последнее время в радиолюбительской литературе опубликовано много описаний различных конструкций на микроконтроллерах, чаще всего - семейства picmicro фирмы microchip. Не умаляя их достоинств, автор решил напомнить, что существуют и другие микроконтроллеры, и сделал предлагаемый прибор на одном из них - АТ89С2051 из семейства mcs-51.

Микроконтроллеры семейства МС5-51 - несомненные чемпионы среди восьмиразрядных как по числу разновидностей, так и по числу компаний, выпускающих их модификации. Первый представитель этого семейства - intel 8051 - был выпущен еще в 1980 г. Для своего времени это очень сложное изделие. На его кристалле 128 тыс. транзисторов, в четыре раза больше, чем в микропроцессоре intel 8086, базовом для персональных компьютеров ibm pc. Удачный набор периферийных устройств, возможность работы с внешней и внутренней программной памятью и приемлемая цена обеспечили микроконтроллеру intel 8051 большой успех. Важную роль сыграла открытая политика фирмы intel, широко распространявшей лицензии на производство приборов с ядром 8051 среди ведущих полупроводниковых компаний мира: philips, siemens, intel, atmel, dallas. temic, ow. amd, mhs, lg(winbond, silicon systems и ряда других. В СССР микроконтроллеры семейства msc-51 выпускали в Киеве (1816ВЕ31. 1816ВЕ51). Воронеже (1830ВЕ31, 1830ВЕ51), Минске (1834ВЕЗ1) и Новосибирске (1850ВЕ31).
Сегодня во всем мире производят более 200 модификаций микроконтроллеров этого семейства, начиная с простых 20-выеодных до сложнейших 100-выводных с встроенными АЦП, многочисленными таймерами-счетчиками, аппаратными умножителями и 64 Кбайт программной памяти на одном кристалле. Все они имеют общую систему команд и с точки зрения программиста различаются лишь числом регистров специального назначения.
Когда у автора возникла необходимость защитить подвал гаража от промерзания, дистанционно контролируя и регулируя температуру в нем, для блока измерения температуры и управления нагревателем был выбран микроконтроллер at89c2051-24pi из упомянутого семейства. Ввиду отсутствия в нем энергонезависимой памяти данных для хранения сведений об установленном режиме и допустимых значениях температуры пришлось применить отдельную микросхему энергонезависимой памяти at24c02-10pi Обе микросхемы рассчитаны на работу в "индустриальном" интервале температуры окружающей среды (-40...+85 °С).
На выбор повлияло и то, что суммарная стоимость этих микросхем в одной из московских торговых фирм вдвое меньше цены популярного микроконтроллера pic16f84a-04i/p, работающего в том же температурном интервале.

Основные технические характеристики
Тип датчика ds1820 или ds18b20
Измеряемая температура, °С
максимальная +99.9
минимальная - 55
Дискретность отсчета, "С 0.1
Поддерживаемая температура С
максимальная +99,9
минимальная 0
Расход времени на ввод нового значения поддерживаемой температуры, с.
не более 15

Схема, приведенная на рис. 1, стала почти классической для микроконтроллерных устройств такого назначения. В микроконтроллер dd1 загружена программа, приведенная в таблице.


Нагрузочная способность выходов примененного микроконтроллера - 20 мА при низком уровне напряжения на них и всего 50 мкА при высоком поэтому светодиодные семиэлементные индикаторы hg1 и hg2 выбраны с общими анодами. Чтобы сократить число выводов микроконтроллера, необходимое для подключения индикаторов, программно организована динамическая индикация с длительностью отображения каждого разряда 3 мс Элемент g (знак "минус") индикатора hg1.1 подключей вместо элемента h (десятичной точки) индикатора hg1.2. так что фактически индикация трехразрядная, ее полный цикл занимает 9 мс.
Нередко на время съема показаний датчиков, вычисления температуры, записи данных в eeprom и других сравнительно длинных операций динамическую индикацию приостанавливают, что воспринимается как мерцание индикаторов. Чтобы исключить это неприятное явление, программа оптимизирована и работает с жесткой привязкой к темпу индикации.
Резисторы r7-r14 ограничивают ток катодов индикаторов hg1 и hg2. Транзисторы vt1, vt2, vt4 коммутируют их аноды, подключая поочередно к плюсу источника питания. Резисторы r1, r2 ограничивают ток при случайных замыканиях идущих к датчикам ВК1 и ВК2 проводов, длина которых может достигать нескольких метров. Так как эти провода могут оказаться проложенными в непосредственной близости от силовых кабелей, входы Р3.2 микроконтроллера dd1 и scl микросхемы памяти ds1 защищены от возможных импульсных помех диодами vd5 и vd6. Использование одного и того же вывода микроконтроллера для связи с датчиком и для управления памятью стало возможным потому, что эти функции никогда не выполняются одновременно. Резистор r4 - нагрузочный для линии интерфейса 1-wire согласно которому между микроконтроллером и датчиком происходит обмен командами и данными.
Резистор r3 поддерживает высокий логический уровень на входе РЗ.З микроконтроллера, когда ни одна из кнопок управления sb1-sb3 не нажата. Диоды vd7-vd9 устраняют последствии нажатия на несколько кнопок одновременно. Транзистор vt3 по командам микроконтроллера включает и выключает реле К1, управляющее нагревателем (или другим исполнительным устройством), и сигнальный светодиод hl1. Диод vd10 защищает светодиод hl1 от обратного напряжения.
Светодиод hl2, подключенный вместо элемента h индикатора hg2.2, служит дополнительным индикатором. Например, он выключен, когда на индикатор выведены показания датчика ВК1, и включен, когда выведены показания датчика ВК2.
Узел питания прибора состоит из выпрямителя на диодном мосте vd1 -vd4 и стабилизатора напряжения +5 В da1.
Цифровые датчики температуры ВК1, ВК2 - ds1820 или более современные ds18s20 - внесены в Государственный реестр средств измерений под№ 3169-02 и, таким образом, официально допущены к применению в РФ. В некоторых случаях это имеет решающее значение. Датчики работают при напряжении питания 3...5.5 В, потребляя в режиме ожидания ток не более 1 мкА, а во время отсчета температуры и формирования результата (эти процессы занимают не более 750 мс) - приблизительно 1 мА. Дискретность результата измерения (0,5 С) может быть уменьшена, если прочитать значения регистров датчика count_remain (остаток после счета) и count_perc (число, соответствующее одному градусу Цельсия). Зная их и temp read (температуру, считанную из датчика стандартным образом), более точное ее значение можно вычислить по формуле:

Этим приемом дискретность представления температуры доведена до 0,1 °С.
Каждому экземпляру датчиков указанных выше типов присвоен уникальный индивидуальный номер длиной 48 двоичных разрядов, хранящийся в его внутреннем ПЗУ. Это позволяет соединять параллельно практически неограниченное число датчиков, взаимодействуя с каждым из них отдельно.
В описываемом устройстве микроконтроллер подает датчикам первой команду skip_rom (ОССН), предписывающую пропустить процедуру проверки индивидуального номера. Далее команда convert_t (44Н) запускает процесс измерения температуры сразу в двух датчиках. Через 750 мс, необходимых для завершения этого процесса, микроконтроллер подает команду match_rom (55Н), сопровождаемую индивидуальным номером одного из датчиков. В результате на следующую команду read_scratchpad (ОВЕН) откликается и сообщает микроконтроллеру результат измерения только этот датчик. Затем (после команды начальной установки) последовательность команд match_rom и read_scratchpad повторяется для второго датчика.
Полученные данные микроконтроллер обрабатывает и выводит на индикатор. Для удобства незначащий нуль на индикатор не выводится, а знак "минус", если он нужен, примыкает слева к старшей значащей цифре. Если при связи с датчиком зафиксирован сбой, что может означать неисправность или отсутствие датчика, вместо значения температуры будет выведено (в стилизованном виде) сообщение "-dat".
Кратковременными нажатиями на кнопку sb1 переключают прибор на индикацию показаний датчика ВК1 или ВК2. Если удерживать эту кнопку нажатой более 5 с, будет включен режим автоматического поочередного вывода показаний датчиков с периодом 5 с. Выходят из этого режима коротким нажатием на ту же кнопку.
Терморегулятор всегда работает по показаниям датчика ВК2. Нажатиями на кнопку sb2 на индикатор вызывают значения температуры в такой последовательности: нижняя пороговая (при ней происходит включение нагревателя) - верхняя пороговая (при ее достижении нагреватель будет выключен) - текущая. Вывод на индикатор верхней пороговой температуры сопровождается включением светодиода hl2.
Изменяют значение пороговой температуры, выведенной в данный момент на индикатор, нажатиями на кнопки sbi (в сторону увеличения) и 5ВЗ (в сторону уменьшения). Шаг изменения - 0,1 °С. Если удерживать соответствующую кнопку нажатой более 1 с, значение начнет расти или уменьшаться со скоростью 30 шагов в секунду. Если в течение 5 с ни одна из кнопок не нажималась, устройство автоматически переходит к индикации текущей температуры. Чтобы выключить терморегулятор, достаточно установить пороговые значения температуры равными или нижнее больше верхнего.
Прежде чем начать измерение температуры и ее регулирование, устройство должно "зарегистрировать" подключенные к нему датчики - определить и запомнить их индивидуальные номера. Для регистрации датчики подключают поочередно (второй на это время должен быть отключен).
Включив прибор, нажмите на кнопку sb2 и удерживайте ее нажатой не менее 5 с до появления на индикаторе стилизованного сообщения "pr1". свидетельствующего о готовности зарегистрировать подключенный датчик как ВК1. Если необходимо зарегистрировать датчик как ВК2, кратковременно нажмите на кнопку sb2, что приведет к выводу на индикатор сообщения "pr2". Еще одним нажатием можно вернуть на индикатор сообщение "pr1" и так далее.
Собственно регистрация происходит после нажатия на кнопку sb1. Если девять попыток микроконтроллера связаться с датчиком, определить и запомнить его индивидуальный номер не принесут успеха, будет сделан вывод о неисправности или отсутствии датчика, а на индикатор выведено сообщение "-dat". После успешной регистрации на индикаторе появится значение измеренной зарегистрированным датчиком температуры. Описанную процедуру необходимо выполнить и в случае замены одного или обоих датчиков. Данные о датчиках и режимах индикации хранятся в микросхеме энергонезависимой памяти ds1.


Термометр-термостат собран на односторонней печатной плате размерами 75x74 мм, показанной на рис. 2. Задача добиться максимальной плотности монтажа и минимальных размеров платы при ее разработке не ставилась. В любительских условиях значительно важнее простота изготовления, удобство монтажа и налаживания. Очевидно, применив малогабаритные элементы и двусторонний поверхностный монтаж, размеры платы можно было существенно уменьшить. Но это не дало бы никаких эксплуатационных преимуществ. Там, где должен быть установлен прибор, свободного места для него в избытке. Внешний вид смонтированной и действующей платы - на рис. 3.

Прибор питают от сети через любой понижающий трансформатор с напряжением на вторичной обмотке 9 В при токе 300 мА и хорошей межобмоточной изоляцией. Вместо сдвоенных светодиодных индикаторов hlec-d512gwb зеленого цвета свечения можно применить любые другие с общим анодом, от одноразрядных до счетверенных. Естественно, при соответствующей корректировке печатной платы.
Диоды 1n4148 заменяют любыми маломощными кремниевыми, например, серии КД522, а диоды 1n4007 - выпрямительными на ток не менее 300 мА, например, серии КД208 или КД209 Замена транзисторов КТ3107А -КТ502Б, КТ502Г, ВС327. Стабилизатор 7805 можно заменить отечественным КР142ЕН5А или КР142ЕН5В. Его желательно снабдить небольшим теплоотводом. Вместо микросхемы АТ24С02 можно применить АТ24С01А. Частота кварцевого резонатора может находиться в пределах 10... 12 МГц. Реле К1 - с обмоткой на 12 В, током срабатывания 70 мА и контактами, рассчитанными на ток 10 А при напряжении 250 В. Вместо электромагнитного репе можно использовать симисторный коммутатор с оптической развязкой, собрав его по схеме, подобной изображенной на рис. 2 в статье С. Корякова "Термометр с функцией таймера или управления термостатом" ("Радио". 2003, № 10, с. 26-28).
Устройство помещено в корпус из изоляционного материала с разъемами для подключения датчиков (удобны трехконтактные аудиоразъемы с диаметром штекера 3.5 мм), сети и нагревателя.

Раздел: [Устройства на микроконтроллерах]
Сохрани статью в:
Оставь свой комментарий или вопрос:

В строительстве с измерением температуры мы сталкиваемся постоянно: температуру нужно контролировать при обжиге клинкера в процессе производства цемента, соблюдение температурных режимов важно при пропарке бетона и монолитном бетонировании, не обеспечив тепловой контроль невозможно правильно приготовить асфальтобетонную смесь, при проведении испытаний бетонов на морозостойкость также важно выдержать температурный режим. Для решения каждой из этих задач нужны разные термометры: на различные диапазоны температур, с разными датчиками (температуры среды, температуры поверхности), одноканальный термометр, двухканальный термометр, многоканальный термометр, с режимом регистрации и без него.

Любая строительная задача, связанная с тепловым контролем, может быть решена при помощи приборов компании «Интерприбор». Это возможно благодаря широкой номенклатуре подключаемых к приборам датчиков. Включение того или иного датчика в комплектацию прибора теплового контроля позволит покупателю приобрести прибор, предназначенный для конкретных целей.

Виды датчиков температуры

Среди датчиков для приборов контроля температуры выделяют:

  • Серию датчиков температуры поверхности: ТЗ-П и ТЗ-ПО. Датчик ТЗ-П разработан для измерения температур криволинейных поверхностей. Его отличает высокое быстродействие за счёт исполнения на ХК-термопаре при относительной погрешности ±2,0%. Конструкция датчика ТЗ-ПО обеспечивает точность ±0,5% (в диапазоне температур –50…+100 С) при измерении температуры поверхности тел с относительно низкой теплопроводностью (стекло, бетон и т.д.). ТЗ-ПО выполнен на основе малоинерционного платинового элемента Pt1000.
  • Датчики температуры среды также имеют несколько исполнений: ТЗ-С, ДТС-1.0 и ДТС-1.4 . Датчик ТЗ-С выполнен на ХК-термопаре, его отличительной особенностью является повышенное быстродействие и широкий диапазон измеряемых температур при точности измерения ±1,0%. Датчики ДТС-1.0 и 1.4 это цифровые датчики температуры с повышенной точностью измерения ±0,5% в узком диапазоне температур –10…+85 С и диапазоном –55…+125 С при точности ±2,0%. Датчик ДТС-1.4 отличает более высокое быстродействие за счёт особенностей конструкции.

Перед вами проект двухканального термометра. Он может измерять температуру в диапазоне от -50.0 до +99.9 градусов. Устройство было разработано для измерения температуры в доме и на улице, но ему также можно найти и множество других применений. При небольшом изменении программы устройство также можно использовать в качестве термостата. Термометр построен на популярном и очень широко распространенном датчике и микроконтроллере ATtiny2313, что значительно упростило разработку и позволило значительно уменьшить размеры. Термометр удалось сжать так, что почти все элементы расположены под трехразрядным дисплеем 15 мм. Практически все элементы SMD. Конечно, можно было бы применить TH компоненты, но в эпоху миниатюризации лучше сделать еще один шаг вперед по созданию системы с наименьшими размерами. Термометр может измерять температуру в двух местах, с помощью двух датчиков, подключенных на независимых шинах. Изменение отображаемой температуры осуществляется с помощью двух кнопок.

Принцип работы

Принципиальная схема:

Сердцем устройства является микроконтроллер U1 (ATTINY2313), который тактируется от внутреннего генератора 8MHz , без делителя частоты. Отсутствие кварца позволило уменьшить размеры устройства, а также освободило две ножки МК, к одной из них сейчас подключена кнопка S2. Микроконтроллер получает показания температуры с двух датчиков, преобразовывает данные в форму, пригодную для отображения на дисплее и обрабатывает нажатия кнопок S1 и S2. Конденсатор С1 (100nF), расположенный рядом с микроконтроллером - фильтрующий. Конденсаторы С2 (10 мкФ) и С3 (10 мкФ) необходимы для правильной работы U3 (78L05).Простота схемы обусловлена используемым датчиком температуры. Это 12-битный цифровой термометр, который может работать в диапазоне от -55 до +125 градусов. Время обработки (преобразования) температуры длится не дольше, чем 750 мс. Связь с микроконтроллером осуществляется по интерфейсу 1-Wire. В качестве индикатора температуры используется трехзначный светодиодный дисплей (AT5636BMR-В) с внутренними соединениями сегментов, адаптированный для динамической индикации. Резисторы R4-R11 ограничивают ток на светодиодном дисплее до 10-12 мА (на сегмент). Тем не менее, средний ток меньше из-за использования динамической индикации. Управление анодами осуществляется тремя популярными транзисторами Т1 - Т3 (BC857). Токи базы ограничены резисторами R1-R3 (3,3 кОм). Важным компонентом является разъем GP1, через который подключаются датчики и управляющий выход (в случае термостата).

Изготовление

Устройство изготовлено на основе печатной платы. Плата односторонняя, и почти все элементы SMD. Исключением является дисплей, кнопки управления и разъемы. Сборка не сложная, но требует большого мастерства при пайке SMD. Недостатком платы является отсутствие разъема для программирования, так что если придется вносить изменения в программу вам необходимо будет припаять провода программатора к плате напрямую. Но можно установить на плате миниатюрный разъем.

Распиновка разъема

Выводы 1 и 2 этого разъема это питание и заземление. Вывод 3 предназначен для подключения индикации отрицательных температур (Катодом на разъем, анодом на +5В через резистор 200 - 300 Ом). Датчики подключаются через трехжильный провод. Первый датчик подключается к выводу 5, а второй датчик к выводу 6. Устройство питается от 7-12В через стабилизатор 78L05.

Программирование

Программа написана в известной среде программирования . Она занимает около 70% памяти микроконтроллера и может быть успешно скомпилирована в демо версии BASCOM"a. Программа не сложная. Далее представлены некоторые элементы кода

Обработчик прерывания Timer0 :

Przerwanie0: Timer0 = 131 Set F4ms Incr Dziel(1) If Dziel(1) = 25 Then Dziel(1) = 0 Set F100ms Incr Dziel(2) If Dziel(2) = 10 Then Dziel(2) = 0 Set F1s End If End If Return

Основной цикл:

Do If F4ms = 1 Then Reset F4ms "co 4ms Wysw = T Gosub Wyswietl_zmierz End If If F100ms = 1 Then Reset F100ms "co 100ms If Pind.2 = 0 Then Kanal = 1 If Pina.0 = 0 Then Kanal = 0 End If Loop End

Процедура управления дисплеем:

Wyswietl_zmierz: Incr Mux If Mux = 5 Then Mux = 0 Portd.3 = Not Minus For I = 1 To 3 Wysw_pomoc = Wysw Mod 10 Ww = Wysw_pomoc W(i) = Lookup(ww , Tabela) Wysw = Wysw / 10 Next I If W(3) = 40 Then W(3) = 255 "wygaszenie zera wiodącego Select Case Mux Case 0: Portb = W(3) Reset Portd.6 Case 1: Set Portd.6 Portb = W(2) And &B11011111 Reset Portd.5 Case 2: Set Portd.5 Portb = W(1) Reset Portd.4 Case 3: Set Portd.4 Portb = 255 Gosub Temp "Case 4: End Select Return Tabela: Data 40 , 235 , 50 , 162 , 225 , 164 , 36 , 234 , 32 , 160

Процедура измерения температуры:

Temp: If F1s = 1 Then Reset F1s 1wreset Pind , Kanal 1wwrite &HCC , 1 , Pind , Kanal 1wwrite &HBE , 1 , Pind , Kanal T = 1wread(2 , Pind , Kanal): Minus = T.15 T = Abs(t) T = T * 10 T = T / 16 1wreset Pind , Kanal 1wwrite &HCC , 1 , Pind , Kanal 1wwrite &H44 , 1 , Pind , Kanal End If Return

Fusebits микроконтроллера должны быть установлены для работы с внутренним RC-генератором с частотой 8 МГц

Фотографии

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 МК AVR 8-бит

ATtiny2313

1 SO20 В блокнот
U3 Линейный регулятор

L78L05

1 SOT89 В блокнот
T1-T3 Биполярный транзистор

BC857

3 В блокнот
C1 Конденсатор 100 нФ 1 В блокнот
C2, C3 Электролитический конденсатор 10 мкФ 2 Танталовый SMD 3216A В блокнот
R1-R3 Резистор

3.3 кОм

3 SMD 0805 В блокнот
R4-R11 Резистор

330 Ом

8 SMD 0805 В блокнот
R12, R13 Резистор

4.7 кОм

2 SMD 0805 В блокнот
W1 Семисегментный индикатор AT5636BMR 1