Двойное дифференцирование сигнала rc цепочкой. Дифференцирующая цепь. Электрическая цепь RC

RC цепь может изменять форму сложных сигналов так, что выходная форма будет совсем не похожа на входную. Величина искажения определяется постоянной времени RC цепи. Тип искажения определяется выходной компонентой, включенной параллельно выходу. Если параллельно выходу включен резистор, то цепь называется дифференцирующей. используется в цепях синхронизации, для получения узких импульсов из прямоугольных , а также для получения переключающих импульсов и меток. Если параллельно выходу включен конденсатор, то цепь называется интегрирующей. используется в цепях формирования сигналов в радио, телевидении, радиолокаторах и в компьютерах .

На рисунке изображена дифференцирующая цепь .

Напомним, что сложные сигналы состоят из основной частоты и большого числа гармоник. Когда сложный сигнал поступает на дифференцирующую цепь, она влияет на каждую частоту по разному. Отношение емкостного сопротивления (Х с) к R для каждой гармоники различно. Это приводит к тому, что каждая гармоника сдвигается по фазе и уменьшается по амплитуде в разной степени. В результате исходная форма сигнала искажается. На рисунке показано, что происходит с сигналом прямоугольной формы, прошедшим дифференцирующую цепь.

Подобна дифференцирующей, за исключением того, что параллельно выходу включен конденсатор.

На рисунке показано, как изменяется форма прямоугольного сигнала, прошедшего интегрирующую цепь.

Другим типом цепи, изменяющим форму сигнала, является ограничитель сигнала . На рисунке показана форма сигнала на входе ограничителя: отрицательная часть входного сигнала обрезана.

Цепь ограничения может быть использована для обрезания пиков приложенного сигнала, для получения прямоугольного сигнала из синусоидального, для удаления положительных или отрицательных частей сигнала или для поддержания амплитуды входного сигнала на постоянном уровне. Диод смещен в прямом направлении и проводит ток в течение положительного полупериода входного сигнала. В течение отрицательного полупериода входного сигнала диод смещен в обратном направлении и ток не проводит. Цепь является, по существу, однополупериодным выпрямителем .

Используя напряжение смещения можно регулировать величину обрезаемого сигнала. Параллельный ограничитель может быть смещен для изменения уровня ограничения сигнала. Если необходимо ограничить сигнал и с положительной, и с отрицательной сторон, используются два смещенных диода, включенных параллельно выходу. Это позволяет получить выходной сигнал с амплитудой, не превышающей заранее определенный положительный и отрицательный уровень. При таком преобразовании выходной сигнал приобретает форму, близкую к прямоугольной. Следовательно, эта цепь называется генератором прямоугольных колебаний. На рисунке изображена другая схема ограничителя, ограничивающего сигнал как с положительной стороны, так и с отрицательной с помощью двух стабилитронов.

Выходной сигнал ограничен с двух сторон напряжениями стабилизации стабилитронов. Между этими пределами ни один стабилитрон не проводит и входной сигнал проходит на выход.

Иногда желательно изменить уровень отсчета постоянного тока для сигнала переменного тока. Уровень отсчета постоянного тока — это уровень, относительно которого измеряется сигнал переменного тока. Фиксатор может использоваться для фиксации верхнего или нижнего значения сигнала при заданном постоянном напряжении. В отличие от ограничителя сигнала, фиксатор не изменяет форму сигнала. Диодный фиксатор называют восстановителем постоянной составляющей.

Эта цепь обычно используется в радиолокаторах, телевидении, телекоммуникациях и в компьютерах. В изображенной цепи на вход подан сигнал прямоугольной формы. Назначение цепи — ограничить максимальное значение сигнала напряжением 0 вольт без изменения формы сигнала.

Рассмотрим RC-цепь, изображенную на рис. 3.20,а. Пусть на входе этой цепи действует напряжение u1(t).

Рис. 3.20. Дифференцирующие RC-(а) и RL-(б) цепи.

Тогда для этой цепи справедливо соотношение

и с учетом преобразований будем иметь

Если для данного сигнала выбрать постоянную времени цепи τ=RC настолько большим, что вкладом второго члена правой части (3.114) можно пренебречь, то переменная составляющая напряжения uR≈u1. Это значит, что при больших постоянных времени напряжение на сопротивлении R повторяет входное напряжение. Такую цепь применяют тогда, когда необходимо передать изменения сигнала без передачи постоянной составляющей.

При очень малых значениях τ в (3.114) можно пренебречь первым слагаемым. Тогда

т. е. при малых постоянных времени τ RC-цепь (рис. 3.20,а) осуществляет дифференцирование входного сигнала, поэтому такую цепь называют дифференцирующей RC-цепью.

Аналогичными свойствами обладает и RL-цепь (рис. 3.20,б).

Рис. 3.21. Частотные (а) и переходная (б) характеристики дифференцирующих цепей.

Сигналы при прохождении через RС- и RL-цепи называют быстрыми, если

или медленными, если

Отсюда следует, что рассмотренная RC-цепь дифференцирует медленные и пропускает без искажения быстрые сигналы.

Для гармонической э. д. с. аналогичный результат легко получить, вычисляя коэффициент передачи цепи (рис. 3.20,а) как коэффициент передачи делителя напряжения со стационарными сопротивлениямиR и XC=1/ωC:

При малых τ, а именно когда τ<<1/ω, выражение (3.116) преобразуется в

При этом фаза выходного напряжения (аргумент K) равна π/2. Сдвиг гармонического сигнала по фазе на π/2 эквивалентен его дифференцированию. При τ>>1/ω коэффициент передачи K≈1.

В общем случае модуль коэффициента передачи (3.116), или частотная характеристика цепи (рис. 3.20,а):

а аргумент K, или фазовая характеристика этой цепи:

Эти зависимости показаны на рис. 3.21,а.

Такими же характеристиками обладает RL-цепь на рис. 3.20,б с постоянной времени τ=L/R.

Если в качестве выходного сигнала взять единичный скачок напряжения , то интегрированием уравнения (3.114) можно получить переходную характеристику дифференцирующей цепи, или временную зависимость выходного сигнала при единичном скачке напряжения на входе:

График переходной характеристики показан на рис. 3.21,б.

Рис. 3.22. Интегрииующие RC-(а) и LC-(б) цепи.

Рассмотрим RC-цепь, изображенную на рис. 3.22,а. Она описывается уравнением


При малых τ=RC (для «медленных» сигналов) uC≈u1. Для «быстрых» сигналов напряжение u1 интегрируется:

Поэтому RC-цепь, выходное напряжение которого снимается с емкости C называют интегрирующей цепью.

Коэффициент передачи интегрирующей цепи определяется выражением

При ω<<1/τ K≈1.

Частотная и фазовая характеристики описываются соответственно выражениями

Рис. 3.23. Частотные (а) и переходная (б) характеристики интегрирующих цепей.

и изображены на рис. 3.23,а. Переходная характеристика (рис. 3.23,б) получается интегрированием (3.121) при :

При равных постоянных времени такими же свойствами обладает RL-цепь, изображенная на рис. 3.22,б.

Электрическая цепь, в к-рой выходное напряжение U вых (t)(или ток) пропорционально интегралу по времени от входного напряжения U вх (t) (или тока):


Рис. 1. Интегратор на операционном усилителе. <В основе действия И. ц. лежит накопление заряда на конденсаторе с ёмкостью С под действием приложенного тока или накопление магн. потока в катушке с индуктивностью L под действием приложенного напряжения Преимущественно используются И. ц. с конденсатором. <С наиб, точностью указанный принцип реализуется в интеграторе на операц. усилителе (ОУ) (рис. 1). Для идеального ОУ разность напряжений между его входами и входные токи равны нулю, поэтому ток, протекающий через сопротивление R, равен току заряда

конденсатора С, а напряжение в точке их соединения равно нулю. В результате Произведение RС=t, характеризующее скорость заряда конденсатора, наз. постоянной времени И. ц. <Широко используется простейшая RC-И. ц. (рис. 2, а). В этой схеме ток заряда конденсатора определяется разностью входного и выходного напряжений поэтому интегрирование входного напряжения выполняется приближённо и тем точнее, чем меньше выходное напряжение по сравнению с входным. Последнее условие выполняется, если постоянная времени t много больше интервала времени, по к-рому происходит интегрирование. Для правильного интегрирования импульсного входного сигнала необходимо, чтобы t была много больше длительности импульса Т(рис. 3). Аналогичными свойствами обладает RL-И. ц., показанная на рис. 2, б, для к-рой постоянная времени равна L/R.

Рис. 3. 1 - входной прямоугольный импульс; 2 - выходное напряжение интегрирующей цепи при tдT.

И. ц. применяются для преобразования импульсов, модулированных по длительности, в импульсы, модулированные по амплитуде, для удлинения импульсов, получения пилообразного напряжения, выделения низкочастотных составляющих сигнала и т. п. И. ц. на операц. усилителях применяются в устройствах автоматики и аналоговых ЭВМ для реализации операции интегрирования.

53.Переходные процессы. Законы коммутации и их применение.

Перехо́дные проце́ссы - процессы, возникающие в электрических цепях при различных воздействиях, приводящих их из стационарного состояния в новое стационарное состояние, то есть, - при действии различного рода коммутационной аппаратуры, например, ключей, переключателей для включения или отключения источника или приёмника энергии, при обрывах в цепи, при коротких замыканиях отдельных участков цепи и т. д.

Физическая причина возникновения переходных процессов в цепях - наличие в них катушек индуктивности и конденсаторов, то есть индуктивных и ёмкостных элементов в соответствующих схемах замещения. Объясняется это тем, что энергия магнитного и электрического полей этих элементов не может изменяться скачком при коммутации (процесс замыкания или размыкания выключателей) в цепи.

Переходный процесс в цепи описывается математически дифференциальным уравнением

  • неоднородным (однородным), если схема замещения цепи содержит (не содержит) источники ЭДС и тока,
  • линейным (нелинейным) для линейной (нелинейной) цепи.

Длительность переходного процесса длятся от долей наносекунд до годов. Зависят от конкретной цепи. Например, постоянная времени саморазряда конденсатора с полимерным диэлектриком может достигать тысячелетия. Длительность протекания переходного процесса определяется постоянной времени цепи.

Законы коммутации относятся к энергоемким (реактивным) элементам, т. е. к емкости и индуктивности. Они гласят: напряжение на емкости и ток в индуктивности при конечных по величине воздействиях являются непрерывными функциями времени, т. е. не могут изменяться скачком.

Математически эта формулировка может быть записана следующим образом

Для емкости;

Для индуктивности.

Законы коммутации являются следствием определений элементов емкости и индуктивности.

Физически закон коммутации для индуктивности объясняется противодействием ЭДС самоиндукции изменению тока, а закон коммутации для емкости – противодействием напряженности электрического поля конденсатора изменению внешнего напряжения.

54.Вихревые токи, их проявления и использование.

Вихревые токи или токи Фуко́ (в честь Ж. Б. Л. Фуко) - вихревые индукционные токи, возникающие в проводниках при изменении пронизывающего их магнитного поля.

Впервые вихревые токи были обнаружены французским учёным Д. Ф. Араго (1786-1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске вихревые токи, которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физиком Фуко (1819-1868) и названы его именем. Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.

Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть замкнуты в кольце.

Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы.

Тепловое действие токов Фуко используется в индукционных печах - в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нём возникают вихревые токи, разогревающие его до плавления.

С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.

Во многих случаях токи Фуко могут быть нежелательными. Для борьбы с ними принимаются специальные меры: с целью предотвращения потерь энергии на нагревание сердечников трансформаторов, эти сердечники набирают из тонких пластин, разделённых изолирующими прослойками. Появление ферритов сделало возможным изготовление этих сердечников сплошными.

Вихретоковый контроль - один из методов неразрушающего контроля изделий из токопроводящих материалов.

55. Трансформатор, основные свойства и виды конструкции.

Сложные радиоэлектронные устройства состоят из простых цепей. Рассмотрим цепь, состоящую из резистора и конденсатора, включенных последовательно с идеальным генератором напряжения, показанную на рис. 3.3.

Рис.3.3. Дифференцирующая цепь

Если выходное напряжение снимается с резистора, то цепь называется дифференцирующей, если с конденсатора – интегрирующей. Эти линейные цепи характеризуются стационарными и переходными характеристиками. Это связано с тем, что изменение величины действующего в цепи напряжения приводит к тому, что токи и напряжения в различных участках цепи приобретают новые значения. Изменение состояния цепи происходит не мгновенно, а в течение некоторого интервала времени. Поэтому различают установившееся и переходное состояние электрической цепи.

Электрические процессы считаются установившимися (стационарными), если закон изменения всех напряжений и токов совпадает с точностью до постоянных величин с законом изменения действующего в цепи напряжения от внешнего источника. В противном случае считают, что цепь находится в переходном (нестационарном) состоянии.

К стационарным характеристикам относятся амплитудно-частотная и фазовая характеристики линейной цепи.

Нестационарное состояние линейной цепи описывается переходной характеристикой.

Будем считать, что к входу цепи подключен идеальный генератор напряжения . На основании второго закона Кирхгофа для дифференцирующей цепи можно записать дифференциальное уравнение, связывающее напряжения и ток в ветвях цепи:

(3.2)

Так как напряжение на выходе цепи , то:

(3.3)

Подставляя в интеграл значение тока, получим:

(3.4)

Продифференцируем левую и правую части последнего уравнения по времени:

(3.5)

Перепишем это уравнение, в следующем виде:

, (3.6)

Где =— параметр цепи называемый постоянной времени цепи.

В зависимости от величины постоянной времени возможны два различных соотношения между первым и вторым слагаемыми правой части уравнения.

Если постоянная времени большая по сравнению с периодом гармонических сигналов >>Или с длительностью импульсов >>, которые можно подавать на вход этой цепи, то

И напряжение на выходе цепи с небольшими искажениями повторяет входное напряжение:

Если же постоянная времени мала по сравнению с периодом гармонических сигналов <<Или с длительностью импульсов <<, то

Отсюда напряжение на выходе равно:

Таким образом, в зависимости от величины постоянной времени такая -цепь может либо с определенными искажениями передавать входной сигнал на выход, либо с определенной степенью точности его дифференцировать. При этом форма выходного сигнала будет разной. Ниже на рис. 3.4 представлены входное напряжение, напряжения на резисторе и конденсаторе для случаев, когда постоянная времени велика и постоянная времени мала .

А Б

Рис. 3.4. Напряжения на элементах дифференцирующей цепи при (А ) и (Б )

В начальный момент времени на резисторе появляется скачок напряжения, равный амплитуде входного сигнала, а затем начинается заряд конденсатора, во время которого напряжение на резисторе будет уменьшаться.

Когда постоянная времени , конденсатор не успевает зарядиться до амплитуды входного импульса и -цепь с небольшими искажениями передает входной сигнал на выход. При << конденсатор успеет полностью зарядиться до амплитуды входного напряжения за время действия первого импульса, а за время паузы между импульсами – полностью разрядиться. При этом на выходе цепи появляются укороченные импульсы, приблизительно соответствующие производной от входного сигнала. Считается, что когда Цепочка дифференцирует входной сигнал.

Теперь определим коэффициент передачи дифференцирующей цепи. Комплексный коэффициент передачи дифференцирующей цепи при подаче на вход гармонического сигнала равен:

. (3.11)

Обозначим отношение , где — граничная частота полосы пропускания дифференцирующей цепи.

Выражение для коэффициента передачи примет вид:

Модуль коэффициента передачи равен:

. (3.13)

— граничная частота полосы пропускания, на которой модуль реактивного сопротивления становится равным величине активного сопротивления, а коэффициент передачи цепи равен . Зависимость модуля коэффициента передачи от частоты называется амплитудно–частотной характеристикой (АЧХ).

Зависимость угла сдвига фаз между выходным и входным напряжениями от частоты называется фазовой характеристикой (ФЧХ). Фазовая характеристика:

Ниже на рис. 3.5 представлены АЧХ и ФЧХ дифференцирующей цепи:

Рис. 3.5. Амплитудно–частотная и фазовая характеристики

Дифференцирующей цепи

Из амплитудно-частотной характеристики видно, что прохождение сигналов через дифференцирующую цепь сопровождается уменьшением амплитуд низкочастотных составляющих его спектра. Дифференцирующая цепь является фильтром высоких частот.

Из фазовой характеристики видно, что фазы низкочастотных составляющих сдвигаются на больший угол, чем фазы высокочастотных составляющих.

Переходную характеристику дифференцирующей цепи можно получить, если на вход подать напряжение в виде единичного скачка. Комплексный коэффициент передачи равен

ДИФФЕРЕНЦИРУЮЩАЯ ЦЕПЬ - устройство, предназначенное для дифференцирования по времени электрич. сигналов. Выходная реакция Д. ц. u вых (t ) связана со входным воздействием u вх (t ) соотношением , где - пост. величина, имеющая размерность времени. Различают пассивные и активные Д. ц. Пассивные Д. ц. применяют в импульсных и цифровых устройствах для укорачивания импульсов. Aктивные Д. ц. используют как дифференциаторы в аналоговых вычислит. устройствах. Простейшая пассивная Д. ц. показана на рис. 1, а . Ток через ёмкость пропорционален производной приложенного к ней напряжения . Если параметры Д. ц. выбраны т. о.,

что u c =u вх, то , a . Условие u c =u вх выполняется, если на самой верхней частоте спектра входного сигнала Вариант пассивной Д. ц. показан на рис. 1, б . При условии имеем и

Рис. 1. Схемы пассивных дифференцирующих цепей: а - ёмкостной RC; б - индуктивной RL .

Следовательно, при заданных параметрах Д. ц. дифференцирование тем точнее, чем ниже частоты, на к-рых концентрируется энергия входного сигнала. Однако чем точнее дифференцирование, тем меньше коэфф. передачи цепи и, следовательно, уровень выходного сигнала. Это противоречие устраняется в активных Д. ц., где процесс дифференцирования сочетается с процессом усиления. В активных Д. ц. используют операционные усилители (ОУ), охваченные отрицательной обратной связью (рис. 2). Входное напряжение u вх (t ) дифференцируется цепочкой, образованной последоват. соединением ёмкости С и R экв - эквивалентного сопротивления схемы между зажимами 2-2", а затем усиливается ОУ. Если подать напряжение на инвертирующий вход ОУ, то при условии, что его коэффициент усиления , , получим

Рис. 2. Схема активной дифференцирующей цепи.

Рис. 3. Прохождение импульса через дифференцирующую цепь RC: а - входной импульс, u вх =Е при ; б - напряжение на ёмкости u c (t); в - выходное напряжение .

Для сравнит. оценки активных и пассивных Д. ц. при прочих равных условиях можно использовать отношение . При прохождении через Д. ц. импульсных сигналов происходит уменьшение их длительности, отсюда понятие о Д. ц. как об укорачивающих. Временные диаграммы, иллюстрирующие прохождение импульса прямоугольной формы через пассивную Д. ц., приведены на рис. 3. Предполагается, что, источник входного напряжения характеризуется нулевым внутр. сопротивлением, а Д. ц.- отсутствием паразитных ёмкостей. Наличие внутр. сопротивления приводит к уменьшению амплитуды напряжения на входных клеммах и, следовательно, к уменьшению амплитуд выходных импульсов; наличие паразитных ёмкостей - к затягиванию процессов нарастания и спада выходных импульсов. Аналогичным укорачивающим действием обладают также активные Д. ц.

Мы имеем полное право перейти к рассмотрению цепей, состоящих из этих элементов 🙂 Этим мы сегодня и займемся.

И первая цепь, работу которой мы рассмотрим – дифференцирующая RC-цепь.

Дифференцирующая RC-цепь.

Из названия цепи, в принципе, уже понятно, что за элементы входят в ее состав – это конденсатор и резистор 🙂 И выглядит она следующим образом:

Работа данной схемы основана на том, что ток, протекающий через конденсатор , прямо пропорционален скорости изменения напряжения, приложенного к нему:

Напряжения в цепи связаны следующим образом (по закону Кирхгофа):

В то же время, по закону Ома мы можем записать:

Выразим из первого выражения и подставим во второе:

При условии, что (то есть скорость изменения напряжения низкая) мы получаем приближенную зависимость для напряжения на выходе:

Таким образом, цепь полностью оправдывает свое название, ведь напряжение на выходе представляет из себя дифференциал входного сигнала.

Но возможен еще и другой случай, когда title="Rendered by QuickLaTeX.com" height="22" width="134" style="vertical-align: -6px;"> (быстрое изменение напряжения). При выполнении этого равенства мы получаем такую ситуацию:

То есть: .

Можно заметить, что условие будет лучше выполняться при небольших значениях произведения , которое называют постоянной времени цепи :

Давайте разберемся, какой смысл несет в себе эта характеристика цепи 🙂

Заряд и разряд конденсатора происходит по экспоненциальному закону:

Здесь – напряжение на заряженном конденсаторе в начальный момент времени. Давайте посмотрим, каким будет значение напряжения по истечении времени :

Напряжение на конденсаторе уменьшится до 37% от первоначального.

Получается, что – это время, за которое конденсатор:

  • при заряде – зарядится до 63%
  • при разряде – разрядится на 63% (разрядится до 37%)

С постоянной времени цепи мы разобрались, давайте вернемся к дифференцирующей RC-цепи 🙂

Теоретические аспекты функционирования цепи мы разобрали, так что давайте посмотрим, как она работает на практике. А для этого попробуем подавать на вход какой-нибудь сигнал и посмотрим, что получится на выходе. В качестве примера, подадим на вход последовательность прямоугольных импульсов:

А вот как выглядит осциллограмма выходного сигнала (второй канал – синий цвет):

Что же мы тут видим?

Большую часть времени напряжение на входе неизменно, а значит его дифференцаил равен 0 (производная константы = 0). Именно это мы и видим на графике, значит цепь выполняет свою дифференцирующую функцию. А с чем же связаны всплески на выходной осциллограмме? Все просто – при “включении” входного сигнала происходит процесс зарядки конденсатора, то есть по цепи проходит ток зарядки и напряжение на выходе максимально. А затем по мере протекания процесса зарядки ток уменьшается по экспоненциальному закону до нулевого значения, а вместе с ним уменьшается напряжение на выходе, ведь оно равно . Давайте увеличим масштаб осциллограммы и тогда мы получим наглядную иллюстрацию процесса зарядки:

При “отключении” сигнала на входе дифференцирующей цепи происходит аналогичный переходный процесс, но только вызван он не зарядкой, а разрядкой конденсатора:

В данном случае постоянная времени цепи у нас имеет небольшую величину, поэтому цепь хорошо дифференцирует входной сигнал. По нашим теоретическим расчетам, чем больше мы будем увеличивать постоянную времени, тем больше выходной сигнал будет похож на входной. Давай проверим это на практике 🙂

Будем увеличивать сопротивление резистора, что и приведет к росту :

Тут даже не надо ничего комментировать – результат налицо 🙂 Мы подтвердили теоретические выкладки, проведя практические эксперименты, так что давайте переходить к следующему вопросу – к интергрирующим RC-цепям .


Запишем выражения для вычисления тока и напряжения данной цепи:

В то же время ток мы можем определить из Закона Ома:

Приравниваем эти выражения и получаем:

Проинтегрируем правую и левую части равенства:

Как и в случае с дифференцирующей RC-цепочкой здесь возможны два случая:

Для того, чтобы убедиться в работоспособности цепи, давайте подадим на ее вход точно такой же сигнал, какой мы использовали при анализе работы дифференцирующей цепи, то есть последовательность прямоугольных импульсов. При малых значениях сигнал на выходе будет очень похож на входной сигнал, а при больших величинах постоянной времени цепи, на выходе мы увидим сигнал, приближенно равный интегралу входного. А какой это будет сигнал? Последовательность импульсов представляет собой участки равного напряжения, а интеграл от константы представляет из себя линейную функцию (). Таким образом, на выходе мы должны увидеть пилообразное напряжение. Проверим теоретические выкладки на практике:

Желтым цветом здесь изображен сигнал на входе, а синим, соответственно, выходные сигналы при разных значениях постоянной времени цепи. Как видите, мы получили именно такой результат, который и ожидали увидеть 🙂

На этом мы и заканчиваем сегодняшнюю статью, но не заканчиваем изучать электронику, так что до встречи в новых статьях! 🙂