Первый запуск устройства и поиск неисправностей. Поиск неисправностей в электронных схемах

Название: Поиск неисправностей в электрических схемах
Бенда Дитмар
Год: 2010 (во быстрые...)
Страниц: 250
Формат: DjVu
Размер: 7.18 Mб
Язык: русский (перевод с немецкого)
В книге обобщен многолетний опыт практической работы и приведены проверенные методики поиска неисправностей для различных электронных устройств. На большом количестве примеров аналоговых и цифровых блоков, программируемых контроллеров и компьютерной техники показан системный подход и специфика поиска неисправностей в электрических схемах. Рассмотрены основные правила проведения технического обслуживания, фазы поиска неисправностей, диагностика устройств, тестирование электронных компонентов.

Оглавление
Предисловие
Глава 1 . Основные правила успешного технического обслуживания
1.1. Системный подход, логика и опыт гарантируют успех
1.2. Общение с клиентом
Глава 2. Получение информации об устройствах и системах
2.1. Системный сбор информации о знакомом и неизвестном
2.2. Собирайте информацию целенаправленно
2.3. Устанавливайте характерные черты структуры
Глава 3. Систематизированный поиск неисправностей в автоматизированных устройствах
3.1. Предпосылки и последовательность успешного поиска неисправностей
3.2. Оценка фактического состояния устройства
3.3. Локализация области неисправности
3.4. Мероприятия по ремонту и вводу в эксплуатацию
Глава 4. Определение полярности и напряжения в электронных блоках и схемах
4.1. Измерение напряжения
4.2. Неисправности в электрической цепи
4.3. Точка, взятая в качестве опорного потенциала, определяет полярность и значение напряжений
4.4. Примеры определения полярности и напряжений
4.5. Упражнения для закрепления полученных знаний
Глава 5 . Системный поиск неисправностей в аналоговых схемах
5.1. Определение напряжений в схемах
5.2. Последствия возможных коротких замыканий и обрывов при различных видах связи
Соединительные связи
Отрицательные обратные связи
Положительные обратные связи
5.3. Систематизированный поиск неисправностей в аналоговых схемах
5.4. Поиск неисправностей в схемах управления и регулировки
Электропривод трехфазного тока
Стабилизатор напряжения
5.5. Поиск неисправностей в колебательных схемах
LC-генератор синусоидальных колебаний
Мостовой RC-генератор
Функциональный преобразователь
5.6. Поиск неисправностей в операционных усилителях
Поиск неисправностей в предусилителях
Оконечный усилитель
5.7. Упражнения для закрепления полученных знаний
Глава 6. Системный поиск неисправностей в импульсных и цифровых схемах
6.1. Напряжения в цифровых схемах
6.2. Воздействия возможных коротких замыканий и внутренних обрывов
6.3. Систематизированный поиск ошибок в цифровой схеме
6.4. Ошибки в цифровых интегральных схемах
6.5. Упражнения для закрепления полученных знаний
Глава 7. Поиск неисправностей в системе с компьютерными схемами
7.1. Диагностика неисправностей в схемах с тремя состояниями
7.2. Проверка статических функциональных параметров
7.3. Проверка динамических функциональных параметров
7.4. Систематизированный поиск неисправностей в компьютерной схеме
7.5. Поиск неисправностей в схемах интерфейсов
7.6. Упражнения для закрепления полученных знаний
Глава 8. Поиск неисправностей в системах на программируемых контроллерах
8.1. Проверка статических и динамических функциональных параметров
8.2. Техническое обслуживание путем диагностики с помощью устройства визуального отображения
8.3. Систематизированный поиск неисправностей в схеме программируемого контроллера
8.4. Упражнения для закрепления полученных знаний
Глава 9 . Поиск неисправностей в системе с сетевым напряжением питания
9.1. Сетевые помехи и их воздействия
9.2. Поиск неисправностей в схемах выпрямителей
9.3. Поиск неисправностей в источниках питания
9.4. Упражнения для закрепления полученных знаний
Глава 10. Поиск ошибок в системах тестирования при обслуживании и производстве
10.1. Внутрисхемное тестирование
10.2. Поиск неисправностей с помощью контактной системы тестирования
10.3. Подготовка электронных блоков к тестированию
10.4. Локализация коротких замыканий
10.5. Упражнения для закрепления полученных знаний
Приложение. Ответы к упражнениям
Предметный указатель

Существуют два метода тестирования для диагностики неисправности электронной системы, устройства или печатной платы: функциональный контроль и внутрисхемный контроль. Функциональный контроль обеспе­чивает проверку работы тестируемого модуля, а внутрисхемный контроль состоит в проверке отдельных элементов этого модуля с целью выяснения их номиналов, полярности включения и т. п. Обычно оба этих метода при­меняются последовательно. С разработкой аппаратуры автоматического контроля появилась возможность очень быстрого внутрисхемного кон­троля с индивидуальной проверкой каждого элемента печатной платы, включая транзисторы, логические элементы и счетчики. Функциональ­ный контроль также перешел на новый качественный уровень благодаря применению методов компьютерной обработки данных и компьютерного контроля. Что же касается самих принципов поиска неисправностей, то они совершенно одинаковы, независимо от того, осуществляется ли про­верка вручную или автоматически.

Поиск неисправности должен проводиться в определенной логической последовательности, цель которой - выяснить причину неисправности и затем устранить ее. Число проводимых операций следует сводить к минимуму, избегая необязательных или бессмысленных проверок. Пре­жде чем проверять неисправную схему, нужно тщательно осмотреть ее для возможного обнаружения явных дефектов: перегоревших элементов, разрывов проводников на печатной плате и т. п. Этому следует уделять не более двух-трех минут, с приобретением опыта такой визуальный кон­троль будет выполняться интуитивно. Если осмотр ничего не дал, можно перейти к процедуре поиска неисправности.

В первую очередь выполняется функциональный тест: проверяется работа платы и делается попытка определить неисправный блок и по­дозреваемый неисправный элемент. Прежде чем заменять неисправный элемент, нужно провести внутрисхемное измерение параметров этого эле­мента, для того чтобы убедиться в его неисправности.

Функциональные тесты

Функциональные тесты можно разбить на два класса, или серии. Тесты серии 1 , называемые динамическими тестами, применяются к законченному электронному устройству для выделения неисправного каскада или блока. Когда найден конкретный блок, с которым связана неисправность, применяются тесты серии 2, или статические тесты, для определения одного или двух, возможно, неисправных элементов (резисторов, конден­саторов и т. п.).

Динамические тесты

Это первый набор тестов, выполняемых при поиске неисправности в элек­тронном устройстве. Поиск неисправности должен вестись в направлении от выхода устройства к его входу по методу деления пополам. Суть этого метода заключается в следующем. Сначала вся схема устройства де­лится на две секции: входную и выходную. На вход выходной секции подается сигнал, аналогичный сигналу, который в нормальных условиях действует в точке разбиения. Если при этом на выходе получается нор­мальный сигнал, значит, неисправность должна находиться во входной секции. Эта входная секция делится на две подсекции, и повторяется предыдущая процедура. И так до тех пор, пока неисправность не будет локализована в наименьшем функционально отличимом каскаде, напри­мер в выходном каскаде, видеоусилителе или усилителе ПЧ, делителе частоты, дешифраторе или отдельном логическом элементе.

Пример 1. Радиоприемник (рис. 38.1)

Самым подходящим первым делением схемы радиоприемника является деление на ЗЧ-секпию и ПЧ/РЧ-секцию. Сначала проверяется ЗЧ-секция: на ее вход (регулятор громкости) подается сигнал с частотой 1 кГц через разделительный конденсатор (10-50 мкФ). Слабый или искаженный сигнал, а также его полное отсутствие указывают на неисправность ЗЧ-секции. Делим теперь эту секцию на две подсекции: выходной каскад и предусилитель. Каждая подсекция прове­ряется, начиная с выхода. Если же ЗЧ-секция исправна, то из громкоговорителя должен быть слышен чистый тональный сигнал (1 кГц). В этом случае неис­правность нужно искать внутри ПЧ/РЧ-секции.

Рис. 38.1.

Очень быстро убедиться в исправности или неисправности ЗЧ-секции мож­но с помощью так называемого «отверточного» теста. Прикоснитесь концом отвертки к входным зажимам ЗЧ-секции (предварительно установив регулятор громкости на максимальную громкость). Если эта секция исправна, будет отче­тливо слышно гудение громкоговорителя.

Если установлено, что неисправность находится внутри ПЧ/РЧ-секции, сле­дует разделить ее на две подсекции: ПЧ-секцию и РЧ-секцию. Сначала прове­ряется ПЧ-секция: на ее вход, т. е. на базу транзистора первого УПЧ подается амплитудно-модулированный (AM) сигнал с частотой 470 кГц 1 через раздели­тельный конденсатор емкостью 0,01-0,1 мкФ. Для ЧМ-приемников требуется частотно-модулированный (ЧМ) тестовый сигнал с частотой 10,7 МГц. Если ПЧ-секция исправна, в громкоговорителе будет прослушиваться чистый тональный сигнал (400-600 Гц). В противном случае следует продолжить процедуру разбиения ПЧ-секции, пока не будет найден неисправный каскад, например УПЧ или детектор.

Если неисправность находится внутри РЧ-секции, то эта секция по возмож­ности разбивается на две подсекции и проверяется следующим образом. АМ-сигнал с частотой 1000 кГц подается на вход каскада через разделительный конденсатор емкостью 0,01-0,1 мкФ. Приемник настраивается на прием радио­сигнала с частотой 1000 кГц, или длиной волны 300 м в средневолновом диапа­зоне. В случае ЧМ-приемника, естественно, требуется тестовый сигнал другой частоты.

Можно воспользоваться и альтернативным методом проверки - методом покаскадной проверки прохождения сигнала. Радиоприемник включается и на­страивается на какую-либо станцию. Затем, начиная от выхода устройства, с по­мощью осциллографа проверяется наличие или отсутствие сигнала в контроль­ных точках, а также соответствие его формы и амплитуды требуемым критериям для исправной системы. При поиске неисправности в каком-либо другом элек­тронном устройстве на вход этого устройства подается номинальный сигнал.

Рассмотренные принципы динамических тестов можно применить к любому электронному устройству при условии правильного разбиения системы и подбора параметров тестовых сигналов.

Пример 2. Цифровой делитель частоты и дисплей (рис. 38.2)

Как видно из рисунка, первый тест выполняется в точке, где схема делится при­близительно на две равные части. Для изменения логического состояния сигна­ла на входе блока 4 применяется генератор импульсов. Светоизлучающий диод (СИД) на выходе должен изменять свое состояние, если фиксатор, усилитель и СИД исправны. Далее поиск неисправности следует продолжить в делителях, предшествующих блоку 4. Повторяется та же самая процедура с использовани­ем генератора импульсов, пока не будет определен неисправный делитель. Если СИД не изменяет свое состояние в первом тесте, то неисправность находится в блоках 4, 5 или 6. Тогда сигнал генератора импульсов следует подавать на вход усилителя и т. д.


Рис. 38.2.

Принципы статических тестов

Эта серия тестов применяется для определения дефектного элемента в каскаде, неисправность которого установлена на предыдущем этапе про­верок.

1. Начать с проверки статических режимов. Использовать вольтметр с чувствительностью не ниже 20 кОм/В.

2. Измерять только напряжение. Если требуется определить величину тока, вычислить его, измерив, падение напряжения на резисторе из­вестного номинала.

3. Если измерения на постоянном токе не выявили причину неисправно­сти, то тогда и только тогда перейти к динамическому тестированию неисправного каскада.

Проведение тестирования однокаскадного усилителя (рис. 38.3)

Обычно номинальные значения постоянных напряжений в контрольных точках каскада известны. Если нет, их всегда можно оценить с прие­млемой точностью. Сравнив реальные измеренные напряжения с их но­минальными значениями, можно найти дефектный элемент. В первую очередь определяется статический режим транзистора. Здесь возможны три варианта.

1. Транзистор находится в состоянии отсечки, не вырабатывая никакого выходного сигнала, или в состоянии, близком к отсечке («уходит» в область отсечки в динамическом режиме).

2. Транзистор находится в состоянии насыщения, вырабатывая слабый искаженный выходной сигнал, или в состоянии, близком к насыщению («уходит» в область насыщения в динамическом режиме).

$11.Транзистор в нормальном статическом режиме.


Рис. 38.3. Номинальные напряжения:

V e = 1,1 В, V b = 1,72 В, V c = 6,37В.

Рис. 38.4. Обрыв резистора R 3 , транзистор

находится в состоянии отсечки: V e = 0,3 В,

V b = 0,94 В, V c = 0,3В.

После того как установлен реальный режим работы транзистора, вы­ясняется причина отсечки или насыщения. Если транзистор работает в нормальном статическом режиме, неисправность связана с прохождением переменного сигнала (такая неисправность будет обсуждаться позже).

Отсечка

Режим отсечки транзистора, т. е. прекращение протекания тока, имеет место, когда а) переход база-эмиттер транзистора имеет нулевое напря­жение смещения или б) разрывается путь протекания тока, а именно: при обрыве (перегорании) резистора R 3 или резистора R 4 или когда не­исправен сам транзистор. Обычно, когда транзистор находится в состо­янии отсечки, напряжение на коллекторе равно напряжению источника питания V CC . Однако при обрыве резистора R 3 коллектор «плавает» и теоретически должен иметь потенциал базы. Если подключить вольт­метр для измерения напряжения на коллекторе, переход база-коллектор попадает в условия прямого смещения, как видно из рис. 38.4. По це­пи «резистор R 1 - переход база-коллектор - вольтметр» потечет ток, и вольметр покажет небольшую величину напряжения. Это показание полностью связано с внутренним сопротивлением вольтметра.

Аналогично, когда отсечка вызвана обрывом резистора R 4 , «плавает» эмиттер транзистора, который теоретически должен иметь потенциал ба­зы. Если подключить вольтметр для измерения напряжения на эмиттере, образуется цепь протекания тока с прямым смещением перехода база-эмиттер. В результате вольтметр покажет напряжение, немного большее номинального напряжения на эмиттере (рис. 38.5).

В табл. 38.1 подытоживаются рассмотренные выше неисправности.



Рис. 38.5. Обрыв резистора R 4 , транзистор

находится в состоянии отсечки:

V e = 1,25 В, V b = 1,74 В, V c = 10 В.

Рис. 38.6. Короткое замыкание пе­рехода

база-эмиттер, транзистор на­ходится в

состоянии отсечки: V e = 0,48 В, V b = 0,48 В, V c = 10 В.

Отметим, что термин «высокое V BE » означает превышение нормального напряжения прямого смещения эмиттерного перехода на 0,1 – 0,2 В.

Неисправность транзистора также создает условия отсечки. Напря­жения в контрольных точках зависят в этом случае от природы неис­правности и номиналов элементов схемы. Например, короткое замыкание эмиттерного перехода (рис. 38.6) приводит к отсечке тока транзистора и параллельному соединению резисторов R 2 и R 4 . В результате потенци­ал базы и эмиттера уменьшается до величины, определяемой делителем напряжения R 1 R 2 || R 4 .

Таблица 38.1. Условия отсечки

Неисправность

Причина

  1. 1. V e

V b

V c

V BE

Vac

Обрыв резистора R 1

  1. V e

V b

V c

V BE

Высокое Нормальное

V CC Низкое

Обрыв резистора R 4

  1. V e

V b

V c

V BE

Низкое

Низкое

Низкое

Нормальное

Обрыв резистора R 3


Потенциал коллектора при этом, очевидно, ра­вен V CC . На рис. 38.7 рассмотрен случай короткого замыкания между коллектором и эмиттером.

Другие случаи неисправности транзистора приведены в табл. 38.2.


Рис. 38.7. Короткое замыкание между коллектором и эмиттером, транзистор находится в состоянии отсечки: V e = 2,29 В, V b = 1,77 В, V c = 2,29 В.

Таблица 38.2

Неисправность

Причина

  1. V e

V b

V c

V BE

0 Нормальное

V CC

Очень высокое, не может быть выдержано функционирующим pn -переходом

Разрыв перехода база-эмиттер

  1. V e

V b

V c

V BE

Низкое Низкое

V CC Нормальное

Разрыв перехода база-коллектор

Насыщение

Как объяснялось в гл. 21, ток транзистора определяется напряжением прямого смещения перехода база-эмиттер. Небольшое увеличение этого напряжения приводит к сильному возрастанию тока транзистора. Ко­гда ток через транзистор достигает максимальной величины, говорят, что транзистор насыщен (находится в состоянии насыщения). Потенциал

Таблица 38.3

Неисправность

Причина

  1. 1. V e

V b

V c

Высокое (V c )

Высокое

Низкое

Обрыв резистора R 2 или мало сопротивление резистора R 1

  1. V e

V b

V c

Низкое

Очень низкое

Короткое замыкание конденсатора C 3

коллектора уменьшается при увеличении тока и при достижении насыще­ния практически сравнивается с потенциалом эмиттера (0,1 – 0,5 В). Вооб­ще, при насыщении потенциалы эмиттера, базы и коллектора находятся приблизительно на одинаковом уровне (см. табл. 38.3).

Нормальный статический режим

Совпадение измеренных и номинальных постоянных напряжений и от­сутствие или низкий уровень сигнала на выходе усилителя указывают на неисправность, связанную с прохождением переменного сигнала, на­пример на внутренний обрыв в разделительном конденсаторе. Прежде чем заменять подозреваемый на обрыв конденсатор, убедитесь в его неис­правности, подключая параллельно ему исправный конденсатор близкого номинала. Обрыв развязывающего конденсатора в цепи эмиттера (C 3 в схеме на рис. 38.3) приводит к уменьшению уровня сигнала на выходе усилителя, но сигнал воспроизводится без искажений. Большая утечка или короткое замыкание в этом конденсаторе обычно вносит изменения в режим транзистора по постоянному току. Эти изменения зависят от статических режимов предыдущих и последующих каскадов.

При поиске неисправности нужно помнить следующее.

1. Не делайте скоропалительных выводов на основе сравнения измерен­ного и номинального напряжений только в одной точке. Нужно запи­сать весь набор величин измеренных напряжений (например, на эмит­тере, базе и коллекторе транзистора в случае транзисторного каскада) и сравнить его с набором соответствующих номинальных напряжений.

2. При точных измерениях (для вольтметра с чувствительностью 20 кОм/В достижима точность 0,01 В) два одинаковых показания в разных контрольных точках в подавляющем большинстве случаев указывают на короткое замыкание между этими точками. Однако бывают и исключения, поэтому нужно выполнить все дальнейшие про­верки для окончательного вывода.


Особенности диагностики цифровых схем

В цифровых устройствах самой распространенной неисправностью явля­ется так называемое «залипание», когда на выводе ИС или в узле схемы постоянно действует уровень логического 0 («константный нуль») или ло­гической 1 («константная единица»). Возможны и другие неисправности, включая обрывы выводов ИС или короткое замыкание между проводни­ками печатной платы.


Рис. 38.8.

Диагностика неисправностей в цифровых схемах осуществляется пу­тем подачи сигналов логического импульсного генератора на входы про­веряемого элемента и наблюдения воздействия этих сигналов на состо­яние выходов с помощью логического пробника. Для полной проверки логического элемента «проходится» вся его таблица истинности. Рассмотрим, например, цифровую схему на рис. 38.8. Сначала записываются логические состояния входов и выходов каждого логического элемента и сопоставляются с состояниями в таблице истинности. Подозрительный логический элемент тестируется с помощью генератора импульсов и логи­ческого пробника. Рассмотрим, например, логический элемент G 1 . На его входе 2 постоянно действует уровень логического 0. Для проверки эле­мента щуп генератора устанавливается на выводе 3 (один из двух входов элемента), а щуп пробника - на выводе 1 (выход элемента). Обращаясь к таблице истинности элемента ИЛИ-НЕ, мы видим, что если на одном из входов (вывод 2) этого элемента действует уровень логического 0, то уровень сигнала на его выходе изменяется при изменении логического со­стояния второго входа (вывод 3).

Таблица истинности элемента G 1

Вывод 2

Вывод 3

Вывод 1

Например, если в исходном состоянии на выводе 3 действует логический 0, то на выходе элемента (вывод 1) присутствует логическая 1. Если теперь с помощью генератора изменить логическое состояние вывода 3 к логической 1, то уровень выходного сиг­нала изменится от 1 к 0, что и зарегистрирует пробник. Обратный резуль­тат наблюдается в том случае, когда в исходном состоянии на выводе 3 действует уровень логической 1. Аналогичные тесты можно применить к другим логическим элементам. При этих тестах нужно обязательно пользоваться таблицей истинности проверяемого логического элемента, потому что только в этом случае можно быть уверенным в правильности тестирования.

Особенности диагностики микропроцессорных систем

Диагностика неисправностей в микропроцессорной системе с шинной структурой имеет форму выборки последовательности адресов и данных, которые появляются на адресной шине и шине данных, и последующего сравнения их с хорошо известной последовательностью для работающей системы. Например, такая неисправность, как константный 0 на линии 3 (D 3) шины данных, будет указываться постоянным логическим нулем на линии D 3 . Соответствующий листинг, называемый листингом состояния, получается с помощью логического анализатора. Типичный листинг со­стояния, отображаемый на экране монитора, показан на рис. 38.9. Как альтернатива может использоваться сигнатурный анализатор для сбора потока битов, называемого сигнатурой, в некотором узле схемы и сравнения его с эталонной сигнатурой. Различие этих сигнатур указывает на неисправность.


Рис. 38.9.

В данном видео рассказывается о компьютерном тестере для диагностики неисправностей персональных компьютеров типа IBM PC:

Р аздел Мастерская составлен для начинающих радиолюбителей , которые хотят не только собирать и мастерить самоделки, но и самостоятельно производить ремонт бытовой электроники.

З десь Вы найдёте статьи по ремонту, начиная с таких аппаратов как CD/MP3-проигрыватели и заканчивая бытовыми компактными люминесцентными лампами. Узнаете, как правильно разобрать/собрать CD деку автомобильного проигрывателя и как восстановить работоспособность портативной звуковой колонки. Также рассматриваются основные моменты ремонта и приводятся качественные фотографии для наглядности.

Н а страницах этого раздела найдётся информация о том, как отремонтировать DVD – плеер и музыкальный центр. Рассказано о таких типичных неисправностях современных цветных телевизоров, как, например, появление цветных пятен на экране кинескопа. Есть статьи и о современной портативной технике – MP3 плеерах, переносных звуковых колонках и малогабаритных LCD-телевизорах.

Д ля более полного освоения информации приводятся качественные фотографии ремонтируемых аппаратов и их узлов. В некоторых случаях приводятся принципиальные схемы, фотографии радиодеталей и их цоколёвка. Вся предоставленная информация основывается исключительно на личном опыте ремонта бытовой электроники.

Для перехода на интересующую статью кликните ссылку или миниатюрную картинку-иконку, расположенную рядом с кратким описанием материала.

Удачного ремонта!

Ремонт телевизионной техники

Что делать, если у ЖК-телевизора слетела прошивка и он не включается? Перепрошиваем SPI Flash память 25 серии. Подробный мануал для начинающих радиомехаников и электронщиков.

В телевизорах Erisson распространена неисправность транзистора 2SB764 в цепях кадровой развёртки. Однако неисправность проявляется повторно даже после замены неисправного транзистора на новый. Причина неисправности - "баг", ошибка при проектировании аппарата. В статье подробно рассмотрен пример устранения данного дефекта при ремонте телевизоров Erisson моделей 1401 и 2102.

В статье рассмотрен ремонт переносного LCD-телевизора Prology HDTV-909S. Неисправность - телевизор не включается. В процессе ремонта портативного телевизора был заменён отечественным аналогом транзистор 2SA2039, что никак не сказалось на работоспособности LCD-телевизора Prology.

Ремонт аппаратуры с лазерным оптическим приводом

Главная часть любого дискового устройства - лазерный привод. Немного знаний о ремонте и устранении причин сбоев этих устройств не помешает, особенно начинающим радиомеханикам!

Основные неисправности DVD плееров и методы их устранения (No disk и Error). Наиболее уязвимые детали DVD плееров - лазерный считыватель, привод шпинделя, драйвер и главный процессор. Рекомендации по ремонту и замене неисправных деталей и узлов DVD проигрывателей.

Как быстро заменить оптический лазерный блок в DVD? Простая пошаговая методика избавит начинающих радиомехаников от кропотливой работы по разборке DVD-привода и замены в нем лазера.

При ремонте автомобильных CD/MP3-проигрывателей иногда необходимо произвести чистку линзы оптического лазерного блока, заменить двигатель шпинделя в CD-приводе. Как правильно и быстро разобрать/собрать CD-привод? В статье рассмотрена пошаговая методика разборки CD-привода, для наглядности приводится много фотографий.

Переносной CD/MP3-проигрыватель плохо воспроизводит запись с диска? Узнайте о том, как устранить сбой в CD/MP3-проигрывателе при воспроизведении записи с диска. Пример из реальной практики ремонта, плюс несколько советов о том, как устранить неисправность переносного CD/MP3-проигрывателя.

Ремонт звуковоспроизводящей аппаратуры

С данной статьи мы начнём знакомство с устройством, схемотехникой, а также "комплектухой" автомобильного усилителя. Несмотря на кажущиеся различия, все автомобильные усилители имеют схожую конструкцию и схемотехнику. Материал, изложенный в статье, поможет начинающим радиомеханикам разобраться в устройстве любого автоусилителя.

В этой статье рассказывается об устройстве и ремонте акустической системы SVEN IHOO MT5.1R. Информация будет интересна всем тем, кто интересуется самостоятельным ремонтом звукоусилительной аппаратуры. Пример реальной неисправности и методики ремонта. Прилагается архив с принципиальной схемой аппарата.

Несмотря на всю сложность схемотехники современных музыкальных центров неисправности их довольно типичны. Показана практика ремонта на примере устранения неисправности музыкального центра Samsung MAX-VS720 - хриплый и тихий звук. Узнай сейчас!

Простой ремонт плеера Xcube. Наиболее распространённые неисправности миниатюрных MP-3 плееров, это механические поломки, связанные с интенсивной эксплуатацией этих популярных устройств.

Как-то раз мне на ремонт принесли Bluetooth-колонку JBL Charge 3, но это оказалось не она... Пример ремонта дешёвой копии одной из популярных беспроводных акустических систем.

В последнее время широкое распространение получили переносные акустические системы, по английской терминологии - Portable Speakers (Портативные громкоговорители). Особенно востребованы портативные акустические системы в молодёжной среде. Переносные акустические системы имеют малые габариты, хорошее качество звуковоспроизведения, автономное питание. Какова "электронная начинка" этих устройств?

В практике ремонта нередки случаи, когда ремонт прибора невозможен по причине невозможности замены какого-либо электронного компонента. В таких случаях приходится искать наиболее подходящую замену неисправной детали. В статье рассмотрен ремонт портативной акустической системы. Вместо неисправной микросхемы PAM8403 была довольно успешно встроена микросхема TDA2822.

По статистике неисправностей автомагнитол на первом месте идут поломки связаные с цепями питания этих приборов. Рассмотрен простой ремонт автомагнитолы Mystery MCD-795MPU - выгорел защитный предохранитель, магнитола не включается. Данная методика ремонта пригодится при ремонте любых автомагнитол: кассетных, дисковых, бездисковых (с USB).

Ремонт различной бытовой радиоэлектроники

В этой статье рассказывается об устройстве и ремонте электрического чайника-термоса. Подробно рассмотрена конструкция и назначение конкретных деталей и электронных узлов.

В данной статье рассматривается принципиальная схема термопота. Подробно рассмотрены основные электрические узлы, а также электронные компоненты, которые применяются в термопотах разных фирм. Информация будет непременно полезна всем тем, кто хочет самостоятельно починить неисправный чайник-термос.

Взамен обычных бытовых ламп накаливания приходят компактные энергосберегающие лампы, которые можно установить в стандартный цоколь Е27(Е14). Несмотря на то, что энергосберегающие лампы долговечнее обычных ламп накаливания, они также выходят из строя. Стоимость энергосберегающих ламп довольно высока и их ремонт оправдан хотя бы в личных целях. Особенно, если учесть тот факт, что в большинстве случаев сама лампа исправна, а из строя выходит высокочастотный преобразователь, который несложно починить.

SMD монтаж - один из самых сложных в плане ремонта, особенно при отсутствии спецоборудования и необходимых запчастей. Проблему замены SMD компонентов каждый радиомеханик решает для себя сам. Вот один из примеров...

Электробезопасность при обслуживании и ремонте радиоэлектронной аппаратуры

При ремонте электроустановок, электронных приборов и электропроводки необходимо соблюдать простые правила электробезопасности. В статье кратко описаны некоторые приёмы и правила, которые используют радиолюбители и электрики в повседневной практике.

Электрооборудование транспортных средств

Данная статья посвящена электрике и электрооборудованию рядового китайского скутера. Рассказывается практически обо всех элементах электрической схемы скутера, их назначении и особенностях. Информация будет интересна всем владельцам китайских скутеров, которые не знакомы с электрооборудованием скутера, но желают узнать об этом больше.

Неисправность реле-регулятора скутера приводит к нежелательным последствиям: выгорают лампы освещения, выходит из строя аккумуляторная батарея, со временем заряд аккумулятора снижается и приходится заводить скутер кикстартером. Проверить реле-регулятор на скутере можно с помощью мультиметра. О том, как это сделать читайте здесь.

Ремонт источников питания

Вторая часть является продолжением первой части и в ней разбирается состав и работа схемы управления и контроля сварочного инвертора.

Схемотехнике блоков питания ПК посвящены 5 частей. В каждой из них рассказывается об одном из электронных узлов импульсного блока питания (ИБП). Приводятся принципиальные схемы, а также рассказывается о схемотехнических решениях, применяемых в конкретной схеме и возможных неисправностях.

Цикл статей поможет тем начинающим радиолюбителям, которые хотят научиться ремонтировать, модернизировать и самостоятельно анализировать схемотехнику реальных блоков питания. И хотя в качестве примеров приводятся схемы электронных узлов ИБП форм-фактора AT, предоставленная информация поможет понять принцип работы компьютерного ИБП и в дальнейшем разобраться в устройстве более сложных ИБП формата ATX.

В жизни каждого домашнего мастера, умеющего держать в руках паяльник и пользоваться мультиметром, наступает момент, когда поломалась какая-то сложная электронная техника и он стоит перед выбором: сдать на ремонт в сервис или попытаться отремонтировать самостоятельно. В этой статье мы разберем приемы, которые могут помочь ему в этом.

Итак, у вас сломалась какая-либо техника, например ЖК телевизор, с чего нужно начать ремонт? Все мастера знают, что начинать ремонт надо не с измерений, или даже сходу перепаивать ту деталь, которая вызвала подозрение в чем-либо, а с внешнего осмотра. В это входит не только осмотр внешнего вида плат телевизора, сняв его крышку, на предмет подгоревших радиодеталей, вслушивание с целью услышать высокочастотный писк либо щелканье.

Включаем в сеть прибор

Для начала нужно просто включить телевизор в сеть и посмотреть: как он себя ведет после включения, реагирует ли на кнопку включения, либо моргает светодиод индикации дежурного режима, или изображение появляется на несколько секунд и пропадает, либо изображение есть, а звук отсутствует, или же наоборот. По всем этим признакам, можно получить информацию, от которой можно будет оттолкнуться при дальнейшем ремонте. Например в мигании светодиода, с определённой периодичностью, можно установить код поломки, самотестирования телевизора.

Коды ошибок ТВ по миганию LED

После того, как признаки установлены, следует поискать принципиальную схему устройства, а лучше если выпущен Service manual на устройство, документацию со схемой и перечнем деталей, на специальных сайтах посвященных ремонту электроники. Также не лишним, будет в дальнейшем, вбить в поисковик полное название модели, с кратким описанием поломки, передающим в нескольких словах, ее смысл.

Сервис мануал

Правда иногда лучше искать схему по шасси устройства, либо названию платы, например блока питания ТВ. Но как же быть, если схему все же найти не удалось, а вы не знакомы со схемотехникой данного устройства?

Блок схема ЖК ТВ

В таком случае, можно попробовать попросить помощи на специализированных , после проведения предварительной диагностики самостоятельно, с целью собрать информацию, от которой мастера, помогающие вам смогут оттолкнуться. Какие этапы включает в себя, эта предварительная диагностика? Для начала, вы должны убедиться в том, что питание поступает на плату, если устройство вообще не подает никаких признаков жизни. Может быть это покажется банальным, но не лишним будет прозвонить шнур питания на целостность, в режиме звуковой прозвонки. как пользоваться обычным мультиметром.

Тестер в режиме звуковой прозвонки

Затем в ход идет прозвонка предохранителя, в этом же режиме мультиметра. Если у нас здесь все нормально, следует померять напряжения на разъемах питания, идущих на плату управления ТВ. Обычно напряжения питания, присутствующие на контактах разъема, бывают подписаны рядом с разъемом на плате.

Разъем питания платы управления ТВ

Итак, мы замеряли и напряжение какое-либо у нас отсутствует на разъеме - это говорит о том, что схема функционирует не правильно, и нужно искать причину этого. Наиболее частой причиной поломок встречающейся в ЖК ТВ, являются банальные электролитические конденсаторы, с завышенным ESR, эквивалентным последовательным сопротивлением. Про ESR .

Таблица ESR конденсаторов

В начале статьи я писал про писк, который вы возможно услышите, так вот, его проявление, в частности и есть следствие завышенного ESR конденсаторов небольшого номинала, стоящих в цепях дежурного напряжения. Чтобы выявить такие конденсаторы требуется специальный прибор, ESR (ЭПС) метр, либо , правда в последнем случае, конденсаторы придется выпаивать для измерения. Фото своего ESR метра позволяющего измерять данный параметр без выпаивания выложил ниже.

Мой прибор ESR метр

Как быть если таких приборов нет в наличии, а подозрение пало на эти конденсаторы? Тогда нужно будет проконсультироваться на форумах по ремонту, и уточнить, в каком узле, какой части платы, следует заменить конденсаторы, на заведомо рабочие, а таковыми могут считаться только новые (!) конденсаторы из радиомагазина, потому что у бывших в употреблении этот параметр, ESR, может также зашкаливать или уже быть на грани.

Фото - вздувшийся конденсатор

То что вы могли выпаять их из устройства, которое ранее работало, в данном случае значения не имеет, так как этот параметр важен только для работы в высокочастотных цепях, соответственно ранее, в низкочастотных цепях, в другом устройстве, этот конденсатор мог прекрасно функционировать, но иметь параметр ESR сильно зашкаливающий. Сильно облегчает работу то, что конденсаторы большого номинала имеют в своей верхней части насечку, по которой в случае прихода в негодность просто вскрываются, либо образовывается припухлость, характерный признак их непригодности для любого, даже начинающего мастера.

Мультиметр в режиме Омметра

Если вы видите почерневшие резисторы, их нужно будет прозвонить мультиметром в режиме омметра. Сначала следует выбрать режим 2 МОм, если на экране будут значения отличающиеся от единицы, или превышения предела измерения, нам следует соответственно уменьшить предел измерения на мультиметре, для установления его более точного значения. Если же на экране единица, то скорее всего такой резистор находится в обрыве, и его следует заменить.

Цветовая маркировка резисторов

Если есть возможность прочитать его номинал, по , нанесенными на его корпус, хорошо, в противном случае без схемы, не обойтись. Если схема есть в наличии, то нужно посмотреть его обозначение, и установить его номинал и мощность. Если резистор прецизионный, (точный) его номинал можно набрать, путем включения двух обычных резисторов последовательно, большего и меньшего номиналов, первым мы задаем номинал грубо, последним мы подгоняем точность, при этом их общее сопротивление сложится.

Транзисторы разные на фото

Транзисторы, диоды и микросхемы: у них не всегда можно определить неисправность по внешнему виду. Потребуется измерение мультиметром в режиме звуковой прозвонки. Если сопротивление какой либо из ножек, относительно какой то другой ножки, одного прибора, равно нулю, или близко к к этому, в диапазоне от нуля до 20-30 Ом, скорее всего, такая деталь подлежит замене. Если это биполярный транзистор, нужно вызвонить в соответствии с распиновкой, его p-n переходы.

Проверка транзистора мультиметром

Чаще всего такой проверки бывает достаточно, чтобы считать транзистор рабочим. Более качественный метод . У диодов мы также вызваниваем p-n переход, в прямом направлении, должны быть цифры порядка 500-700 при измерении, в обратном направлении единица. Исключение составляют диоды Шоттки, у них меньшее падение напряжения, и при прозвонке в прямом направлении на экране будут цифры в диапазоне 150-200, в обратном также единица. , полевые транзисторы, обычным мультиметром без выпаивания так не проверить, приходится часто считать их условно рабочими, если их выводы не звонятся между собой накоротко, или в низком сопротивлении.


Мосфет в SMD и обычном корпусе

При этом следует учитывать, что у мосфетов между Стоком и Истоком стоит встроенный диод, и при прозвонке будут показания 600-1600. Но здесь есть один нюанс: в случае, если например вы прозваниваете мосфеты на материнской плате и при первом прикосновении слышите звуковой сигнал, не спешите записывать мосфет в пробитый. В его цепях стоят электролитические конденсаторы фильтра, которые в момент начала заряда, как известно, на какое-то время ведут себя, как будто цепь замкнута накоротко.

Мосфеты на материнской плате ПК

Что и показывает наш мультиметр, в режиме звуковой прозвонки, писком, первые 2-3 секунды, а затем на экране побегут увеличивающиеся цифры, и установится единица, по мере заряда конденсаторов. Кстати по этой же причине, с целью сберечь диоды диодного мостика, в импульсных блоках питания ставят термистор, ограничивающий токи заряда электролитических конденсаторов, в момент включения, через диодный мост.

Диодные сборки на схеме

Многих знакомых начинающих ремонтников, обращающихся за удаленной консультацией в Вконтакте , шокирует - им говоришь прозвони диод, они прозваниют и сразу-же говорят: он пробитый. Тут стандартно всегда начинается объяснение, что нужно либо приподнять, выпаять одну ножку диода, и повторить измерение, либо проанализировать схему и плату, на наличие параллельно подключенных деталей, в низком сопротивлении. Таковыми часто бывают вторичные обмотки импульсного трансформатора, которые как раз и подключаются параллельно выводам диодной сборки, или иначе говоря сдвоенного диода.

Параллельное и последовательное соединение резисторов

Здесь лучше всего один раз запомнить, правило подобных соединений:

  1. При последовательном соединении двух и более деталей, их общее сопротивление будет больше большего каждой, по отдельности.
  2. А при параллельном соединении, сопротивление будет меньше меньшего каждой детали. Соответственно наша обмотка трансформатора, имеющая сопротивление в лучшем случае 20-30 Ом, шунтируя, имитирует для нас “пробитую” диодную сборку.

Конечно все нюансы ремонтов, к сожалению, в одной статье раскрыть не реально. Для предварительной диагностики большинства поломок, как выяснилось, бывает достаточно обычного мультиметра, применяемого в режимах вольтметра, омметра, и звуковой прозвонки. Часто при наличии опыта, в случае простой поломки, и последующей замены деталей, на этом ремонт бывает закончен, даже без наличия схемы, проведенный так зазываемым “методом научного тыка”. Что конечно не совсем правильно, но как показывает практика, работает, и, к счастью, совсем не так как изображено на картинке выше). Всем удачных ремонтов, специально для сайта Радиосхемы - AKV.

Обсудить статью ДИАГНОСТИКА И РЕМОНТ ЭЛЕКТРОНИКИ БЕЗ СХЕМ

Мы часто слышим выражение «поиск и устранение неисправностей» среди специалистов по радиоэлектронике. Но что это означает? Иногда процедура поиска и устранения неисправностей неверно истолковывается просто как ремонт отказавшего устройства. Однако ремонт - это лишь один из этапов гораздо более сложного процесса. Специалист, занятый поиском и устранением неисправностей, кроме всего прочего, должен уметь оценивать качество функционирования радиоэлектронной аппаратуры путем сопоставления своих теоретических знаний с реальным поведением устройства. Такая оценка должна проводиться до и после ремонта по причинам, которые станут очевидными при прочтении настоящей главы.
Понятие логического или систематического подхода к задаче поиска и устранения неисправностей является важнейшим среди знаний в области радиоэлектроники, которыми должен обладать радиолюбитель. Немало времени было потеряно на поиск неисправностей наугад. Процедура поиска неисправностей, приведенная в этой главе, разработана с целью вооружить радиолюбителя удобной и надежной методикой эффективной диагностики радиоэлектронных устройств. Если хорошо усвоить содержание и значение рассматриваемых ниже этапов процедуры поиска неисправностей, то можно научиться находить неисправности в любой радиоэлектронной аппаратуре независимо от ее уровня сложности и назначения.

Логический подход

Прежде чем перейти к подробному рассмотрению главного предмета обсуждения - поиска и устранения неисправностей, необходимо определить ту основу, которая составляет суть эффективных методов анализа неисправностей. Такой основой, весьма часто упускаемой на практике из виду, является логический подход. В соответствии с принятой в настоящее время терминологией понятие «логика» определяется следующим образом: система или принципы рассуждений, применимые к любым областям знаний или исследований. Рассматривая это определение применительно к нашему предмету обсуждения, следует выделить «принципы рассуждения». В более широком смысле принципы и правила рассуждений и есть логика.
Уровень сложности большинства современных электронных систем таков, что лица, ответственные за поддержание их в исправном состоянии, должны пройти специальную подготовку. Эти специалисты отнюдь не являются выдающимися знатоками принципов работы и методов технического обслуживания подобных устройств. В чем же тогда заключается секрет их способностей? Просто все дело в том, что их научили логически мыслить.
Изучив основы схемотехники простейших радиоэлектронных устройств, вы сможете более успешно представлять себе, как путем их объединения можно создавать системы, предназначенные для решения конкретных задач. Вооружившись полученными знаниями и логическим подходом к поиску и устранению неисправностей, можно выполнить мысленное функциональное разбиение любой радиоэлектронной (и не только радиоэлектронной) аппаратуры, а затем методично и профессионально ее испытать. Такая процедура сэкономит много ценных человеко-часов, теряемых при бессистемном поиске неисправностей.

Шесть этапов процедуры поиска и устранения неисправностей

Системный подход к поиску и устранению неисправностей в радиоэлектронной аппаратуре позволит существенно сократить время простоя аппаратуры и стоимость ремонта по сравнению с бессистемными методами технического обслуживания и ремонта. Другим не менее важным достоинством такого подхода является возможность постоянного поддержания радиоэлектронной аппаратуры в работоспособном состоянии, при котором ее рабочие характеристики соответствуют паспортным данным.

Этап 1. Выявление признаков неисправности

Первый этап предлагаемого логического подхода к анализу неисправностей заключается в выявлении признаков неисправности. Прежде чем принять решение о необходимости ремонта устройства, следует проверить, как оно функционирует - правильно или неправильно. Все радиоэлектронные устройства предназначены для выполнения одной или нескольких конкретных задач в соответствии с предъявляемыми к ним требованиями. Для этого необходимо, чтобы они постоянно функционировали определенным образом. Если отсутствуют признаки, по которым можно судить о том, что устройство работает неверно, то и поддерживать такое устройство в работоспособном состоянии невозможно. По этой причине выявление признаков неисправности составляет содержание первого этапа процедуры поиска и устранения неисправностей.
Признак неисправности - это некоторый симптом, или указатель, свидетельствующий о нарушении нормального функционирования радиоэлектронного устройства. Задача выявления признака заключается в распознавании этого симптома при его появлении. Если у вас жар или болит голова, то вы знаете, что с вашим организмом происходит что-то неладное. Когда из двигателя автомобиля слышен громкий стук, то это свидетельствует о неисправности какой-то его детали. Аналогичным образом, искажения звука являются признаком неисправности в генераторе или его вспомогательных схемах.
Нормальное и ненормальное функционирование. Поскольку признак неисправности - свидетельство того, что в работе устройства произошли нежелательные изменения, необходимо иметь некоторые показатели его нормального функционирования, служащие в качестве эталона. Сравнивая показатели текущего и нормального функционирования, можно обнаружить признак неисправности и принять решение о том, что он собой представляет.
Нормальная температура человеческого тела равна 36,6 °С. Повышение или понижение температуры относительно этого значения свидетельствует о ненормальном состоянии организма, т.е. служит признаком его «неисправности». Если температура тела равна 39 °С, то, сравнив ее с нормальным значением, можно сказать, что признак «неисправности» организма - это повышение температуры на 2,4 °С. В данном случае этот признак точно определен.
Нормальное телевизионное изображение должно быть четким и контрастным по всей поверхности экрана. Оно должно быть симметрично относительно краев экрана по вертикали и по горизонтали. Если изображение вдруг начинает «бежать» по вертикали, то это признак неисправности, поскольку такое функционирование телевизора не соответствует его нормальной работе.
При нормальном звучании радиоприемника из него слышна вполне разборчивая речь диктора. Если же голос диктора звучит так, как будто он говорит со дна бочки, то слушатель знает, что такое искажение звука есть признак неисправности.
Оценка функционирования. При штатном функционировании большинство радиоэлектронных устройств вырабатывают информацию, которую оператор может слышать или видеть. Таким образом, с помощью органов слуха, а иногда и зрения можно выявить признаки нормальной или ненормальной работы устройства. Отображение информации может быть единственным назначением устройства, или же это его вспомогательная функция, необходимая для оценки его функционирования.
Электрический сигнал, представляемый в виде звуковых колебаний, регистрируется громкоговорителем или наушниками. Визуальное отображение результатов обеспечивается выводом информации на экран электроннолучевой трубки или на измерительный прибор. Кроме того, для визуальной индикации работы устройства можно применить светоизлучающие диоды.
Отказ устройства. Отказ радиоэлектронного устройства - это простейший вид признака неисправности. Отказ устройства означает, что либо все устройство, либо его часть не работает и, следовательно, не подает признаков «жизни». Отсутствие звука у звукового генератора указывает на его полный или частичный отказ. Аналогичным образом, отсутствие развертки или изображения на экране телевизора при правильном положении всех органов управления свидетельствует о его отказе.
Ухудшение функционирования. Возможна ситуация, когда звуковая и визуальная информация присутствуют, а устройство тем не менее работает ненормально. Когда устройство функционирует, но вырабатываемая им информация не соответствует техническим требованиям на устройство, говорят, что имеет место ухудшение функционирования. Подобный недостаток следует устранить так же быстро, как и полный отказ устройства. Степень ухудшения функционирования может быть самой различной - от почти нормальной его работы до почти полного отказа.
Если вы больны, но продолжаете ходить на работу, то весьма вероятно, что ваша работоспособность на время болезни ухудшится. Конечно, вы по-прежнему будете выполнять свою работу, но уже не так хорошо, как всегда.
Знание устройства. Чтобы решить, функционирует ли радиоэлектронное устройство и насколько правильно, необходимо иметь полное представление о его нормальных рабочих характеристиках. Следует помнить, что любая радиоэлектронная схема независимо от ее уровня сложности строится из ряда более простых электронных схем. Они объединяются таким образом, чтобы обеспечить решение поставленной задачи. Следовательно, знание основ схемотехники позволит проанализировать работу любого электронного устройства.
Для получения информации, необходимой для оценки функционирования устройства, обычно используются звуковые или визуальные средства. Однако до тех пор пока эта информация не будет осмыслена с помощью знаний о работе устройства, наличие таких средств не имеет никакого смысла. Именно на
эти знания следует опираться при распознавании признаков неисправности, иначе будет потеряно много времени на всякие ненужные действия и попытки найти неисправность.

Этап 2. Углубленный анализ признака неисправности

На втором этапе более или менее явный признак следует подвергнуть более детальному анализу. Большинство радиоэлектронных устройств или систем имеют органы управления, дополнительные индикаторные приборы помимо основного или другие встроенные средства оценки функционирования аппаратуры. Как вы помните, подобные встроенные компоненты есть и в схемах, рассмотренных в предыдущей главе. Мы часто представляем себе эти средства как некие отдельные устройства, подключаемые к схеме, но не как части этой схемы. Однако это далеко не так. Все рассмотренные в предыдущей главе схемы имеют органы управления, хотя это может быть обычный выключатель питания. Другими органами управления могут быть кнопочные переключатели, переменные резисторы и т.д. Индикаторные приборы являются неотъемлемой частью каждой схемы. Сюда относятся громкоговорители, светоизлучающие диоды и т.д. Необходимо проанализировать, какие органы управления и индикаторные приборы влияют на наблюдаемый признак неисправности или могут дать дополнительную информацию, которая поможет точнее определить этот признак.
Например, если устройство должно работать в разных режимах при не нажатом и нажатом кнопочном переключателе, то может оказаться, что причина неисправности всплывет, если нажать на переключатель. Предположим, что речь идет о генераторе, на выходе которого в нормальном режиме работы отсутствует ожидаемый сигнал. В этом случае вы ничего не теряете, нажав на переключатель. Если сигнала по-прежнему нет, то следует продолжить поиск. Напротив, если при нажатом переключателе сигнал появляется, то можно предполагать, что по крайней мере в этом положении переключателя устройство функционирует, и дальнейший поиск следует сосредоточить на тех частях схемы, которые могут влиять на ее работу при не нажатом переключателе. Здесь имеется в виду не выключатель питания, а переключатель напряжения или частоты.
Неразумно хватать контрольно-измерительную аппаратуру и бросаться очертя голову на поиск неисправности, имея в своем распоряжении лишь скудную начальную информацию о признаке неисправности. Если не проанализировать сначала признак неисправности, то можно легко и быстро сбиться с пути. В результате будет потеряно много Бремени, впустую израсходована электроэнергия, не исключено также, что при этом устройство может совсем выйти из строя. Этот этап описываемого систематического подхода можно назвать этапом сбора большего количества информации.
Углубленный анализ - это процесс более подробного описания признака неисправности. Тот факт, что на экране телевизора отсутствует изображение, не несет количества информации, достаточного, чтобы правильно определить причину неисправности. Данный признак может означать, что перегорела электроннолучевая трубка, возникли неполадки в части схемы, связанной с трубкой, вывернута ручка регулировки яркости или телевизор просто не включен. Сколько будет потеряно времени, если открыть телевизор и качать в нем копаться, хотя все, что требуется, это щелкнуть выключателем, поставить ручку яркости в нужное положение или просто вставить в розетку вилку сетевого шнура!
Аналогичным образом, такой признак неисправности звуковой схемы, как фон переменного тока, может потребовать поиска неисправности в нескольких направлениях, если отсутствует более подробное описание признака. Причиной фона могут быть плохая фильтрация в источнике питания, утечка, сетевая наводка или другие внутренние и (или) внешние повреждения.
Очевидно, основная причина того, что в качестве второго этапа рассматриваемого логического подхода выбран углубленный анализ признака неисправности, заключается в том, что многие схожие признаки неисправности могут быть вызваны многочисленными и разнообразными повреждениями схемы. Для успешного поиска неисправности необходимо принять правильное решение о том. какое повреждение (или повреждения) скорее всего вызывает наблюдаемый признак неисправности.
Использование органов управления. К органам управления относятся все выведенные на лицевую панель и соединенные с внутренними компонентами переключатели и переменные компоненты, которые можно регулировать, не открывая корпус устройства. Это те органы управления, с помощью которых подается питание на схему, настраиваются или регулируются ее рабочие характеристики или задается определенный режим работы.
По самой своей сути органы управления вносят некоторые изменения в режим функционирования устройства. Эти изменения косвенным образом оказывают влияние на токи или напряжения в различных цепях схемы вследствие изменений сопротивления, индуктивности и (или) емкости соответствующих компонентов. Органы отображения информации измерительные приборы и другие устройства индикации - позволяют визуально наблюдать изменения, происходящие в схеме при использовании органов управления.
Наряду с положительными эффектами манипулирование органами управления может вызвать и нежелательные явления в работе схемы. Манипулирование органами управления в неправильном порядке или превышение максимально допустимых напряжений и токов могут привести к повреждениям, проявившимся в виде первоначального признака неисправности. Если не принять соответствующих мер предосторожности при углубленном анализе признака неисправности, то неправильное использование органов управления устройством может нанести ему еще больший вред.
Каждый электронный компонент рассчитан на максимально допустимые ток и напряжение, которые нельзя превышать во избежание его сгорания или пробоя изоляции. Ни в коем случае нельзя устанавливать органы управления в такие положения, когда эти максимально допустимые значения превышаются.
Дальнейшее уточнение признака неисправности. На первом этапе рассматриваемой процедуры (выявление признака неисправности) требовалось знать принципы работы устройства, опираясь на которые, можно было бы убедиться в наличии признака неисправности. Эти знания необходимы и на остальных этапах логической процедуры поиска и устранения неисправностей. Знание принципов работы устройства и систематический подход к поиску и устранению неисправностей одинаково важны, знакомства лишь с одним из этих вопросов для работы явно недостаточно.
Задача более углубленного анализа признаков неисправности заключается в том, чтобы получить полное представление о них, а также определить, что они означают. Углубленный анализ необходим для более детального изучения решаемой проблемы.
Неправильная установка органов управления. При неправильной установке органов управления возникает кажущийся признак неисправности. Слово «кажущийся» употреблено здесь потому, что устройство может функционировать отлично, но из-за неправильной установки органов управления состояние средств отображения информации не будет соответствовать ожидаемому. Неправильная установка может быть следствием случайного перемещения органа управления, а также неаккуратной регулировки. Достаточно обнаружить неправильную установку органов управления, чтобы уяснить причину возникновения признака неисправности. На этом поиск неисправности можно закончить, если удалось убедиться, что неправильная установка была ее единственной причиной.
Усугубление признака неисправности. Если все органы управления установлены в правильное положение, а признак неисправности тем не менее остается, то вполне вероятно, что источником этого признака является орган управления. Однако в этом случае причину неисправности следует искать в виде отказа компонента. Неисправный орган управления можно сразу же обнаружить, особенно если отказ механический. Для обнаружения «электронного» повреждения органа управления может понадобиться дополнительная информация, так как один и тот же признак неисправности может свидетельствовать и о других повреждениях электрического характера.
Следует ли считать потерянным время, затраченное на проверку органов управления, если все они установлены правильно? Конечно нет. Во-первых, на это уйдет всего несколько секунд или минут. Во-вторых, имеется весьма веская причина для проверки и манипулирования органами управления, даже если все они установлены правильно. Дело в том, что это поможет получить дополнительную информацию, которая позволит более детально определить признак неисправности и наметить дальнейшие действия по поиску неисправности.
Еще одним способом поиска повреждения является искусственное усугубление признака неисправности, если оно возможно. Анализируя происходящие при этом изменения, можно правильно оценить причину неисправности.
Регистрация информации. Процесс углубленного анализа признака неисправности нельзя считать завершенным до тех пор, пока не будут всесторонне оценены наблюдаемые его проявления. Это означает, что показания индикаторных приборов следует оценить во взаимосвязи друг с другом, а также с функционированием всего устройства. Простейший способ такой оценки заключается в регистрации получаемой информации.
Это позволит вам спокойно посидеть минутку и проанализировать информацию, прежде чем сделать вывод о местонахождении неисправности. Кроме того, в этом случае вы сможете проанализировать принципиальную схему и сравнить полученную информацию с подробным ее описанием, если это необходимо. Последнее особенно полезно для новичка, только начинающего изучать способы поиска и устранения неисправностей. И наконец, записывая все положения органов управления и соответствующие им показания измерительных и индикаторных приборов (если они имеются), можно быстро воспроизвести любую информацию и убедиться в ее правильности. Кроме того, с помощью этих записей в ходе проверки можно точно задавать желаемый режим работы схемы. Следовательно, регистрация информации позволит сэкономить время и накопить полезный опыт по поиску неисправностей.
Если регулировка органа управления не влияет на признак неисправности, то данный факт также следует отразить в своих записях. Впоследствии эта информация может оказаться такой же важной, как и сведения о влиянии органа управления на признак неисправности. Кому-нибудь эта процедура может показаться необязательной, однако она тоже вносит свой вклад в систематический метод анализа неисправностей. Это утверждение станет более очевидным, если глубже рассмотреть проверяемую схему.
Дополнительная информация о признаке неисправности, полученная путем манипулирования органами управления и измерительными приборами, поможет идентифицировать неисправную функцию на следующем этапе рассматриваемой процедуры. Кроме того, она даст возможность оценить местонахождение неисправности и позволит в конце концов локализовать неисправный компонент.
Если неисправность была найдена путем манипулирования органами управления, то задачу анализа неисправности следует считать выполненной. Опираясь на знания о работе схемы, надо выяснить, почему при манипулировании определенным органом управления явный признак неисправности исчезает. Это необходимо для того, чтобы убедиться в отсутствии других поврежденных компонентов, которые в дальнейшем могут вызвать появление аналогичной неисправности.
При манипулировании органами управления следует представлять, в какой части схемы находится данный орган управления. Необходимо регулировать лишь те из них, которые по смыслу оказывают влияние на обнаруженный признак неисправности. При манипулировании органами управления следует проявлять крайнюю осторожность, неверная их установка может вызвать дополнительные повреждения устройства. Этап 3. Составление перечня возможных неисправных функций
Результативность третьего этапа зависит от информации, собранной на двух предыдущих этапах.
Напомним, что этап I заключался в выявлении признака неисправности, т.е. в обнаружении того факта, что устройство функционирует неверно. На этапе 2 (углубленный анализ признака неисправности) с помощью органов управления и индикаторов устройства собирается как можно больше информации о характере его неисправности.

Этап 3 Составление перечня возможных неисправных функций

Предназначен для законченных устройств, содержащих несколько функциональных узлов. Предлагаемая методика позволяет путем логических умозаключений определить функциональный узел (или узлы), в котором, вероятно, содержится неисправность; для этого используется информация, полученная на этапах 1 и 2. Этот выбор осуществляется путем поиска ответа на вопрос: «Где может находиться неисправность, чтобы она могла быть источником собранной информации?»
Термин «функция» употребляется здесь для обозначения некоторой электронной операции, выполняемой определенной частью (или узлом) схемы. Часто термины «функция» (соответствующий структурному разбиению схемы) и «узел» (соответствующий физическому разбиению) являются синонимами. Функциональный узел может конструктивно совпадать с одним или несколькими физическими узлами устройства. Функциональный узел содержит все компоненты, необходимые для выполнения определенной функции. Ниже термины «функция», «узел» и «функциональный узел» используются как синонимы, хотя в некоторых устройствах одна или несколько схем, выполняющих определенную функцию, могут быть встроены в узел, выполняющий другую функцию.
У схемы нельзя спросить о ее «самочувствии», подобно тому как врач спрашивает у больного, что у него болит. Недуги схемы можно выявить, анализируя собранную информацию и используя знания о работе схемы.
Логика выбора. Для определения неисправного узла или функции требуются те же методы построения умозаключений, к которым прибегают врач, автомеханик или любой специалист по технической диагностике, когда они ищут причину болезни или неисправности. Предположим, что вас постоянно мучают головные боли и вы решили, наконец, обратиться к врачу. Если после обследования зрения, слуха и органов дыхания, измерения температуры и выслушивания сердца врач немедленно направит вас в операционную для ампутации ноги, то вы наверняка засомневаетесь в правильности его диагноза. Но вряд ли врач примет такое нелогичное решение на основании результатов своего обследования. Скорее он сделает предположение, что наиболее вероятными причинами заболевания являются плохое зрение, инфекция, занесенная в гайморову полость, или что-нибудь еще. Только приняв такое решение, врач пропишет лекарство.
Радиолюбителя, выполнившего первые два из шести этапов процедуры и решившего сразу после этого приступить к проверке или ремонту устройства с намерением устранить неисправность, хорошим специалистом по поиску и устранению неисправностей не назовешь. Сначала он должен подвергнуть анализу собранную информацию, а затем, исходя из своих знаний о принципах работы схемы, принять технически обоснованное решение о вероятной причине обнаруженных им признаков неисправностей.
Наличие миллионов клеток и множества органов в человеческом организме стало бы непреодолимым препятствием для врача, если бы при постановке диагноза ему пришлось исследовать отдельно каждый орган или клетку. Вместо этого он мысленно делит человеческий организм на функциональные узлы, каждый из которых включает взаимосвязанные органы. Затем он пытается сопоставить симптомы заболевания с нормальной работой разных функциональных узлов. Любой признак ненормальной работы дает ему ключ к пониманию причины болезни.
Признаки ненормальной работы устройства, обнаруженные на этапах 1 и 2, должны дать представление о возможном местонахождении неисправности. Сложное электронное оборудование может содержать, например, 10 тыс. схем или 70 тыс отдельных компонентов. Вероятность обнаружения дефектного компонента путем методичной проверки каждого из 70 тыс. чрезвычайно мала. Масштабы задачи можно уменьшить в семь раз, если проверять не каждую деталь, а лишь состояние выходов каждой схемы.
Однако проведение 10 тыс. проверок также является делом весьма трудоемким. Разбив 10 тыс. схем на электронные функциональные узлы (семь, десяток или два десятка), можно сократить число проверок до приемлемого уровня. Здравый смысл подсказывает, что задача отыскания неисправности может быть решена гораздо быстрее и точнее, если все схемы, входящие в устройство, разбить на меньшее число групп независимо от того, сколько на деле в устройстве схем - тысячи, сотни или единицы.

Этап 4. Локализация неисправной функции

Первые три этапа рассматриваемого систематического подхода к поиску и устранению неисправностей были связаны с изучением очевидных и не очень очевидных недостатков в работе схемы, а также с логическим выбором возможных неисправных функциональных узлов. До сих пор не требовалось никаких контрольно-измерительных приборов, кроме органов управления и устройств индикации, имеющихся в самой схеме. Для обеспечения доступа к компонентам и внутренним органам регулировки следует снять крышки с корпуса устройства. После оценки информации о признаках неисправности на основании логических умозаключений сделано предположение о наиболее вероятных местонахождениях неисправности.
Локализация неисправной функции означает выявление того функционального узла многоузлового устройства, в котором фактически содержится неисправность. Это осуществляется путем последовательной проверки каждого из потенциально неисправных функциональных узлов до обнаружения неисправного узла. Если ни в одном из попавших в список функциональных узлов неисправность не обнаружена, следует вернуться к этапу 3 и еще раз провести оценку информации о признаках неисправности, а также попытаться получить дополнительную информацию. В некоторых случаях может оказаться необходимым вернуться к этапу 2 и снова провести углубленный анализ признака неисправности. На этом этапе понадобятся знания о принципах работы схемы и опыт по поиску неисправностей. Здесь и на последующих этапах большое значение имеет использование стандартных контрольно-измерительных приборов и интерпретация полученной с их помощью информации.
Проверка предполагаемых неисправных функциональных узлов. Цель четвертого этапа - определение функционального узла радиоэлектронной схемы, содержащего выявленную неисправность. Выбор потенциально неисправного узла должен выполняться исходя из знаний о принципах работы схемы и основных понятий радиоэлектроники. В описании этапа 3 отмечалось, что для выбора потенциально неисправных функциональных узлов может существовать как одна, так и много возможностей. Число таких узлов полностью зависит от типа схемы и информации, собранной на этапах 1 и 2 процедуры поиска и устранения неисправностей.
Крайне важно при выборе первого потенциально неисправного функционального узла, подлежащего проверке, опираться на логический подход. О необходимости такого подхода уже говорилось выше. При изучении работы схемы или при отыскании неисправности следует постоянно помнить об этом подходе. Логический подход основывается на знании принципов работы схемы и понимании конкретной ситуации. Рассматриваемые факторы. Одновременное исключение нескольких функциональных узлов, как возможных источников признака неисправности будет играть важную роль при принятии решения о том, какой из потенциально неисправных функциональных узлов следует проверять первым. Для этого требуется проанализировать принципиальную схему и определить, позволят ли результаты проверки одного из потенциально неисправных узлов исключить из перечня остальные потенциально неисправимые функциональные узлы.
Другим важным фактором, влияющим на логику выбора потенциально неисправного функционального узла, подлежащего проверке первым, является доступность контрольных точек. Контрольной точкой называется специальное гнездо, расположенное в доступном месте аппаратуры, например на передней панели или шасси. Гнездо имеет электрическое соединение (непосредственно или через переключатель) с некоторой точкой схемы с важным напряжением или сигналом. Такой контрольной точкой может быть место соединения проводников или компонентов.
Факторы, которые следует принимать во внимание при выборе первой контрольной точки, перечислены ниже в порядке их значимости.
1. Функциональный узел, предоставляющий максимум информации для одновременного исключения из рассмотрения остальных потенциально неисправных узлов, перечень которых был составлен на основании информации, полученной на этапах 1-3 рассматриваемой процедуры, если, конечно, этот узел не является очевидным местом неисправности.
2. Не следует начинать проверку с тех контрольных точек, для доступа к которым придется разбирать проверяемую аппаратуру.
Результаты проверки и выводы. После того как вы научились выбирать первый подлежащий проверке потенциально неисправный узел, возникает вопрос: «Куда двигаться дальше?» Ответ на этот вопрос зависит, естественно, от результатов первого шага.
Здесь только два возможных результата - удовлетворительная или неудовлетворительная работа проверяемого узла. В последнем случае узел либо совсем не работает, либо работает с ухудшенными характеристиками. В любом случае полученный результат укажет следующую необходимую проверку.
Анализ результатов проверок. Что делать, если после проверки последнего из потенциально неисправных узлов неисправность так и не обнаружена? В этом случае либо была допущена ошибка при выполнении проверки, либо результаты проверки были неправильно истолкованы и в итоге поиск неисправности пошел по неверному пути. Вот для этого-то и важно записывать все полученные результаты. Тогда нетрудно вернуться назад и определить, где была допущена ошибка.
Дальнейшее исследование. Если проверка всех подозреваемых узлов показала, что они исправны, то следует еще раз провести оценку информации, полученной в ходе предыдущих проверок. Вопрос состоит в том, насколько далеко следует вернуться к началу данной процедуры.
Можно отбросить всю ранее собранную информацию и начать процедуру сначала, т.е. с этапа 1 (выявление признака неисправности). Однако этого делать не следует, поскольку факт наличия неисправности уже установлен. Возврат к этапу 2 (углубленный анализ системы) позволит еще раз проанализировать схему. Возврат к этапу 3 дает возможность просмотреть ранее составленный список потенциально неисправных функциональных узлов и убедиться, что ни один из таких узлов не был пропущен.
Обнаружение неисправности. Обнаружив неисправный функциональный узел, необходимо убедиться, что он действительно может быть источником выявленного признака неисправности и согласуется с информацией, полученной в процессе углубленного анализа этого признака. Для этого следует снова обратиться к принципиальной схеме.
Чтобы выявить неисправный функциональный узел, мы двигались от сбора информации о признаке неисправности к фактическому ее местонахождению. Чтобы подтвердить правильность определения неисправного функционального узла, следует пройти в обратном направлении. Здесь следует задать себе вопрос: «Какие признаки неисправности может создавать этот неисправный узел?» В этом случае знание принципов работы схемы крайне важно.

Этап 5. Локализация неисправности в схеме

На этапах 1 и 2 (выявление признака неисправности и углубленный анализ признака неисправности) всей шестиэтапной процедуры поиска неисправностей осуществляется сбор исходной диагностической информации. Эта информация, полученная с помощью органов управления исследуемого устройства, состоит из показаний контрольно-измерительных приборов или осциллограмм и может быть использована для более углубленного изучения неисправности. На этапе 3 (составление списка возможных неисправных функциональных узлов)1, исходя из собранной информации и принципов работы схемы, определяются потенциальные неисправные функциональные узлы. На этапе 4 (локализация неисправной функции) выполняются реальные проверки устройства с помощью контрольно-измерительных приборов, в результате которых определяется часть схемы, содержащая неисправность.
На этапе 5 выполняются всесторонние проверки, целью которых является локализация конкретной схемы, содержащей неисправность. Для этого сначала следует выделить внутри функционального узла группу схем, каждая из которых выполняет определенную электронную подфункцию. После локализации этой неисправной группы схем можно приступить к проверкам, которые помогут определить неисправную схему (или схемы).
Этап 5 базируется на общем для всей процедуры поиска неисправностей принципе построения умозаключений, заключающемся в непрерывном сужении области поиска местонахождения неисправности путем принятия логических решений и выполнения рациональных проверок. Такой подход сокращает количество выполняемых проверок, что не только экономит время, но сводит к минимуму вероятность ошибки.
Чтобы лучше понять метод последовательного функционального разбиения, следует обратиться к рис. 1. Первой здесь рассматривается сложная схема, предназначенная для выполнения общей функции устройства. С этим уровнем функциональной классификации связаны этапы 1 и 2 процедуры поиска неисправностей. Далее сложная схема разбивается на функциональные узлы, каждый из которых предназначен для выполнения укрупненной функции, необходимой для реализации общей функции устройства. С этим уровнем функционального разбиения связаны этапы 3 и 4. Если в схеме всего один функциональный узел, то этапы 3 и 4 можно опустить.
Следующий элемент функционального разбиения - группа схем - представляет собой удобную для анализа часть функционального узла. Схемы и каскады в группе схем выполняют подфункцию, принципиально необходимую для выполнения обшей задачи функционального узла. Основной целью этапам является определение групп схем, содержащих неисправность. После этого можно перейти на самый нижний уровень функционального разбиения аппаратуры и выделить отдельную неисправную схему.

Рис. 1. Функциональное разбиение электронной аппаратуры при поиске неисправности.

Правильный подход. Прежде чем продолжить процедуру поиска неисправности и перейти к этапу 5, необходимо остановиться и осмыслить всю полученную к этому моменту информацию, которая может помочь при выполнении следующего этапа. После завершения этапа 4 известно, что все входные воздействия на неисправный функциональный узел правильны, а один или несколько выходных сигналов неверны или вообще отсутствуют. Для получения информации, которая может указать возможные местонахождения неисправности в функциональном узле, следует проанализировать неверные выходные сигналы, обнаруженные на этапе 4. Важно помнить, что первоначальные признаки и предположения, сделанные на первых двух этапах, не следует сбрасывать со счетов только потому, что этапы 3 и 4 закончены. Эта информация будет полезна на протяжении всей процедуры поиска неисправностей и каждый раз должна анализироваться совместно с результатами очередного выполненного этапа, прежде чем перейти к следующему этапу.
На этапе 5 должно быть продолжено сужение области поиска неисправности. Каждый функциональный узел имеет свою отдельную функцию, в него могут входить две или более группы схем, каждая из которых выполняет свою подфункцию. Это означает, что входное воздействие каждой группы (подфункции) преобразуется и появляется на выходе в другом виде. Понимание преобразований, происходящих в функциональном узле, позволяет обоснованно выбрать потенциальное местонахождение неисправности в нем. Затем выполняется проверка с целью локализации неисправной группы схем. Аналогичным образом определяется местонахождение неисправной схемы в группе.
«Заключение в скобки». Важную помощь при поиске неисправности может оказать метод «заключения в скобки», позволяющий сузить область поиска неисправности до неисправной группы схем, а затем и до неисправной схемы.
После завершения проверок на этапе 4 (локализация неисправного функционального узла) и выделения неисправного узла следует прибегнуть к методу «заключения в скобки», для этого надо на принципиальной схеме поставить скобки (мысленно или с помощью карандаша) у входа (входов) с правильным сигналом и у выхода (выходов) с неверным сигналом неисправной функции. Ясно, что неисправность заключена где-то между этими скобками. Идея использования скобок состоит в следующем: после проверки части схемы, находящейся между скобками, выполняется их последовательное перемещение (на входе или на выходе), а затем осуществляется очередная проверка, чтобы определить, не находится ли неисправность в новой области, заключенной между скобками. Этот процесс продолжается до тех пор, пока между скобками не окажется неисправный компонент схемы.
Наиболее важным в этом методе является определение места в схеме, куда должны быть помещены скобки при сужении области поиска неисправности. Это решение зависит от результатов анализа схемы и предыдущих проверок, типа схемных цепей, по которым проходит сигнал, а также от доступности контрольных точек. Всякие перемещения скобок должны иметь своей целью решение задачи локализации неисправности при минимальном числе проверок.

Этап 6. Анализ отказов

Описательная и проверочная информация, полученная на этапах 1 и 2, позволила логично и обоснованно оценить вопрос выбора неисправного функционального узла. На этапе 4 выполнялись простые проверки входных и выходных сигналов. На этапе 5 проводилось более углубленное исследование схем, входящих в проверяемое устройство. Этот этап, потребовал большого объема проверок с привлечением метода заключения в скобки для конкретной схемы. Метод заключения в скобки позволяет обнаружить отказавшую схему или каскад в неисправном функциональном узле.
На последнем этапе шестиэтапной процедуры поиска неисправности - этапе анализа отказов - для выявления местонахождения неисправного компонента понадобится проверить определенные ветви неисправной схемы. Эти ветви представляют собой участки неисправной схемы, содержащие все элементы транзистора, интегральной схемы или другого активного прибора.
После выполнения этапа 6 будет получена вся необходимая информация для замены или ремонта неисправных компонентов, что позволит восстановить нормальное функционирование устройства. Этап 6 не завершается обнаружением неисправного компонента - важно выяснить и причину неисправности. Вполне возможно, что в устройстве остались другие нe выявленные неисправности и если их не устранить, оно снова выйдет из строя. Для успешного анализа отказов необходимо делать записи. Эти записи могут оказаться полезными впоследствии. Кроме того, благодаря им можно обнаружить наличие устойчиво повторяющихся неисправностей, которые могут быть вызваны ошибкой при проектировании. Лишь после успешного завершения этапа 6 можно перейти к ремонту устройства, если он необходим.
Локализация неисправных компонентов. Первый шаг при локализации неисправного компонента в схеме основывается на применении методов, использованных на предыдущих этапах. Для локализации неисправных компонентов или ветви схемы необходимо проанализировать выходной сигнал. Такие параметры выходного сигнала, как напряжение, длительность и (или) форма могут быть признаками обрывов или коротких замыканий в компонентах, а также выхода их номиналов за пределы допусков. На этом шаге решаются две задачи: сокращается до минимума количество необходимых проверок и выясняется, является ли неисправный компонент (в случае его обнаружения) единственной причиной неисправности устройства.
Второй шаг выявления неисправного компонента - это визуальный контроль компонентов и проводников в схеме. При этом часто обнаруживаются сгоревшие или поврежденные компоненты или дефектные соединения. Один из способов локализации неисправных компонентов - это сравнение напряжений на выводах интегральных схем или транзисторов с ожидаемыми значениями, полученными в результате анализа схемы. Такая проверка часто помогает локализовать неисправность вплоть до конкретной ветви схемы. С каждым выводом транзистора или ИС обычно связана отдельная ветвь схемы. Для локализации неисправности также могут оказаться полезными измерения сопротивления в тех же точках схемы. Сопротивление часто измеряется для проверки подозрительных компонентов.
Вместо подозрительного компонента следует установить годный компонент, Однако надо иметь в виду, что не выявленная неисправность в схеме может вывести из строя и этот новый компонент.
Методичные проверки. Сначала всегда следует проверять наиболее вероятные предположения. Затем, учитывая, что с точки зрения сохранности вольтметра в нем перед началом проверок устанавливается верхний предел измерений, следует сначала проверить точки схемы с максимальными уровнями напряжения. Затем надо проверить остальные элементы в порядке убывания напряжений на них.
При проверках напряжений самый главный вопрос заключается в следующем: «Насколько измеренное напряжение должно быть близко к своему номиналу?» При ответе на этот вопрос следует учитывать много факторов. Допуски на номиналы резисторов, сильно влияющие на напряжение в различных точках схемы, могут составлять 20, 10 или 5 %. В некоторых критичных схемах применяются прецизионные компоненты. Интегральные схемы имеют довольно большой разброс характеристик, и поэтому напряжения на их выводах могут также иметь разброс. Кроме того, необходимо принимать во внимание точность измерительных приборов. Большинство вольтметров обеспечивают точность измерений от 5 до 10 %, однако прецизионные вольтметры имеют большую точность.
Локализация неисправного компонента. С помощью описанных выше проверок напряжений и (или) сопротивлений определяется ветвь схемы, содержащая неисправность. Далее требуется отыскать в этой ветви неисправный компонент или компоненты.
Один из способов заключается в измерении с помощью щупа напряжения или сопротивления относительно земли в различных точках электрического соединения двух или более компонентов. В общем случае очень трудно или вообще невозможно определить на основании анализа принципиальной схемы правильные значения этих параметров (особенно напряжений). Поэтому данную процедуру следует применять только для измерения сопротивления с целью обнаружения коротких замыканий и обрывов в исследуемой ветви схемы. Если напряжения отличаются от номинальных, то следует методично проверить параметры каждого резистора, конденсатора и (или) индуктивности, входящих в эту ветвь.
Изучение собранной информации. Изучение всей собранной информации о признаке неисправности и проведенных проверках поможет отыскать остальные неисправные компоненты независимо от того, связаны ли отказы этих компонентов с выявленной ранее неисправностью или же они вызваны другими причинами (в случае нескольких неисправностей).
Чтобы определить, не содержится ли в устройстве несколько неисправностей, следует задать себе вопрос: «Какое влияние оказывает обнаруженный неисправный компонент на функционирование всей схемы?» Если выявленная неисправность может быть источником всех обнаруженных нормальных и ненормальных признаков, то логично предположить, что этот компонент является единственным неисправным компонентом в схеме. В противном случае следует мобилизовать все свои знания по электронике, а также знание конкретной схемы и определить, .какая еще неисправность (неисправности) может быть источником всех выявленных признаков.

Отыскание неисправностей в устройствах на ИС

Процедура поиска и устранения неисправностей была рассмотрена выше безотносительно к тому, на какой элементной базе реализована электронная схема. Для представленных в этой книге устройств на основе ИС поиск неисправностей будет нетрудным и не требующим много времени делом. ИС 555 содержит большое число самых различных элементов и, естественно, нет никакой необходимости проверить каждый из них (да это и невозможно). С помощью описанной выше процедуры поиска неисправностей можно быстро определить неисправную часть схемы. Если это дискретные компоненты, окружающие ИС, то надо их проверить. Если неисправна сама ИС, то ее следует заменить. Понятно, что при этом необходимо убедиться в отсутствии в схеме других неисправностей, способных вывести ИС из строя. В некоторых из предложенных в книге схем используется более одной ИС, а также дискретные транзисторы, диоды, резисторы, органы управления и индикаторы. Однако большая часть схемы все же содержится в ИС. Если рассматривать ИС как один компонент, а не как узел, содержащий много схем, то задача отыскания неисправностей в этих устройствах намного упрощается.

Р.Трейстер, "Радиолюбительские схемы на ИС типа 555"