Основы использования отладчика WinDbg. Отладка с помощью GDB Отладчик gdb команды

Сегодня ты сделаешь еще один шаг в деле
изучения Linux систем. Я расскажу об основных
приемах при работе с gdb. Овладев ими ты сможешь понять, как работает любая программа, писать свои эксплоиты.

Вы, наверное, все слышали про такую вещь как отладчик, gdb – это и есть отладчик. GDB – GNU
Debugger. Это некое подобие SoftICE для Windows (для тех кто не знает – самый популярный и, на мой взгляд, вообще лучший отладчик), только под
Linux системы. Дело в том, что в сети не так уж много документов, которые демонстрируют работу этой вещи и в свое время я его осваивал сам. Итак,
в документе будут описаны базовые команды gdb. Все это будет показано на примере. А в качестве примера я решил взять ненужную прогу yes. Для тех, кто не знает – это программа просто выводит символ ‘y’ до бесконечности, для начала я решил научить ее выводить не этот символ, а строку ‘XAKEP’, хоть веселее будет.

Ну а теперь все по порядку. Сам отладчик запускается так:

Но можно вводить различные параметры, у нас это будет путь к исследуемой программе:

# gdb /usr/bin/yes

Можно исследовать core файлы, для этого нужно ввести следует ввести следующее:

# gdb /usr/bin/yes core

Еще может понадобится команда для просмотра содержимого регистров:

(gdb) info registers

либо так (сокращенный вариант)

Теперь рассмотрим как делать перехваты. Существуют
точки останова, точки перехвата и точки наблюдения. Более конкретно я бы хотел остановиться на точках останова. Их можно устанавливать на:

(gdb) break function - Остановить перед входом в функцию
(gdb) break *adress - Остановить перед выполнением инструкции по адресу.

После установок можно просмотреть все точки для этого воспользуйтесь командой:

(gdb) info break

А потом можно удалить эти точки:

(gdb) clear breakpoint - где break это название точки останова
(например, функция или адрес)

Очень необходимой вещью является возможность автоматического отображения различных значений при выполнении программы. Для этого существует команда display:

(gdb) display/format value , где format – это формат отображения, а value – само выражение которое нужно отобразить.

Для работы с отображением отведены следующие команды:

(gdb) info display - выдает инфу об отображениях
(gdb) delete num - где num – удалить элементы с индексом
num

Это был небольшой справочник по командам, чтобы понять основную идею.
Далее на примере хотелось бы продемонстрировать это и еще немного. И помните – здесь я дал лишь очень маленькую часть всех возможностей gdb, на самом деле у него их в сотни раз больше, поэтому читайте и учите.
Как я и обещал, берем ненужную прогу yes. Путь на вашей машине может не совпадать с моим, все зависит от операционки которой вы пользуетесь, если что воспользуйтесь поиском (команда
find).

# gdb /usr/bin/yes

После запуска он говорит приветственное сообщение.

GNU gdb 19991004




There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux"...
(no debugging symbols found)...

Так как yes выводит бесконечное число символов, то лучше бы их нам не видеть в отладчике, а вывод
программы можно направить на другую консоль. Откройте новый терминал, наберите who is i и вы получите имя консоли. Должно вылезти
что-то вроде этого:

Вот теперь просто привязываем к ней.

(gdb) tty /dev/pts/1

А теперь ставим точку останова на функцию puts(), а чтобы было понятней вот вам man-справка об функции(команда man
puts)

#include
int puts(const char *s);
puts() writes the string s and a trailing newline to std­
out.

Как видно, функция посылаем строку s на поток вывода. Вот она то нам и нужна. На ней то мы пока и остановимся.

(gdb) break puts
Breakpoint 1 at 0x8048698

И запускаем саму программу, чтобы дождаться пока gdb не остановит ее выполнение на вызове функции.

(gdb) r
Starting program: /usr/bin/yes
Breakpoint 1 at 0x4006d585: file ioputs.c, line 32.

Breakpoint 1, 0x4006d585 in _IO_puts (str=0x8048e59 "y") at ioputs.c:32
32 ioputs.c: No such file or directory.
1: x/i $eip 0x4006d585 <_IO_puts+21>: mov 0x8(%ebp),%esi

О, вот и произошло чудо, сработал breakpoint. Что мы видим – а видим мы ни что иное, как параметр функции, точнее адрес, по которому он лежит. Что теперь нужно
сделать? Правильно, подправить данные по этому адресу. При этом мы затрем еще пару символов своими.

(gdb) set {char}0x8048e59="X"
(gdb) set {char}0x8048e5a="A"
(gdb) set {char}0x8048e5b="K"
(gdb) set {char}0x8048e5c="E"
(gdb) set {char}0x8048e5d="P"

Ну а теперь посмотрим на наше творение. Что там лежит в памяти:

(gdb) x/3sw 0x8048e59
0x8048e59 <_IO_stdin_used+437>: "XAKEP\004\b"
0x8048e61 <_IO_stdin_used+445>: ""
0x8048e62 <_IO_stdin_used+446>: ""

Теперь удалим наш брякпоинт:

(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x4006d585 in _IO_puts at ioputs.c:32
breakpoint already hit 1 time
(gdb) clear puts
Deleted breakpoint 1

И продолжим выполнение чтобы насладится результатом:

Вот и все. Выходим.

(gdb) q
The program is running. Exit anyway? (y or n) y

На этом практика заканчивается, остальное изучайте сами и помните что главное в этой жизни – это УЧЕНЬЕ.
Вот еще некоторые примеры работы:

Присоединение к работающему процессу:

// launch gdb
hack@exploit:~ > gdb
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for
details.
This GDB was configured as "i386-suse-linux".
(gdb) attach "pid"
(gdb) attach 1127 // example

Поиск в памяти:

(gdb) x/d or x "address" show decimal
(gdb) x/100s "address" show next 100 decimals
(gdb) x 0x0804846c show decimal at 0x0804846c
(gdb) x/s "address" show strings at address
(gdb) x/105 0x0804846c show 105 strings at 0x0804846c
(gdb) x/x "address" show hexadecimal address
(gdb) x/10x 0x0804846c show 10 addresses at 0x0804846c
(gdb) x/b 0x0804846c show byte at 0x0804846c
(gdb) x/10b 0x0804846c-10 show byte at 0x0804846c-10
(gdb) x/10b 0x0804846c+20 show byte at 0x0804846c+20
(gdb) x/20i 0x0804846c show 20 assembler instructions at address

Список всех секций в исполняемом файле:

(gdb) maintenance info sections // or
(gdb) mai i s

Executable file:
`/home/hack/homepage/challenge/buf/basic", file type
elf32-i386.
0x080480f4->0x08048107 at 0x000000f4: .interp ALLOC

0x08048108->0x08048128 at 0x00000108: .note.ABI-tag
ALLOC LOAD READONLY DATA HAS_CONTENTS
0x08048128->0x08048158 at 0x00000128: .hash ALLOC
LOAD READONLY DATA HAS_CONTENTS
0x08048158->0x080481c8 at 0x00000158: .dynsym ALLOC
LOAD READONLY DATA HAS_CONTENTS
0x080481c8->0x08048242 at 0x000001c8: .dynstr ALLOC
LOAD READONLY DATA HAS_CONTENTS
0x08048242->0x08048250 at 0x00000242: .gnu.version
ALLOC LOAD READONLY DATA
HAS_CONTENTS

Бряк на адрес:

(gdb) disassemble main
Dump of assembler code for function main:
0x8048400

: push %ebp
0x8048401 : mov %esp,%ebp
0x8048403 : sub $0x408,%esp
0x8048409 : add $0xfffffff8,%esp
0x804840c : mov 0xc(%ebp),%eax
0x804840f : add $0x4,%eax
0x8048412 : mov (%eax),%edx
0x8048414 : push %edx
0x8048415 : lea 0xfffffc00(%ebp),%eax
...

(gdb) break *0x8048414 // example
Breakpoint 1 at 0x8048414
(gdb) break main // example
Breakpoint 2 at 0x8048409
(gdb)

GNU Debugger – переносимый отладчик проекта GNU, который работает на многих UNIX-подобных системах и умеет производить отладку многих языков программирования, включая Си, C++, Ada и Фортран. GNU Debugger – свободное программное обеспечение, распространяемое по лицензии GNU General Public License.

Первоначально GNU Debugger написан Ричардом Столлманом в 1988 году. За основу был взят отладчик DBX, поставлявшийся с дистрибутивом BSD. С 1990 до 1993 гг. проект поддерживался Джоном Джилмором, во время его работы в компании Cygnus Solutions. В настоящее время разработка координируется Управляющим комитетом GDB (GDB Steering Committee), назначенным Free Software Foundation.

Технические детали GNU Debugger

  • Особенности

GNU Debugger предлагает обширные средства для слежения и контроля за выполнением компьютерных программ. Пользователь может изменять внутренние переменные программ и даже вызывать функции независимо от обычного поведения программы. GNU Debugger может отлаживать исполняемые файлы в формате a.out, COFF (в том числе исполняемые файлы Windows), ECOFF, XCOFF, ELF, SOM, использовать отладочную информацию в форматах stabs, COFF, ECOFF, DWARF, DWARF2. Наибольшие возможности отладки предоставляет формат DWARF2.

GNU Debugger активно развивается. Например, в версии 7.0 добавлена поддержка «обратимой отладки», позволяющей отмотать назад процесс выполнения, чтобы посмотреть, что произошло. Также в версии 7.0 была добавлена поддержка скриптинга на .

Для работы с GNU Debugger были созданы и другие инструменты отладки например, датчики утечки памяти.

  • Мультиплатформенность и поддержка встроенных систем

GNU Debugger может быть скомпилирован для поддержки приложений для нескольких целевых платформ и переключаться между ними во время отладочной сессии. Процессоры, поддерживаемые GNU Debugger (2003): Alpha, ARM, H8/300, System/370, System/390, x86 и x86-64, IA-64 (Itanium), Motorola 68000, MIPS, PA-RISC, PowerPC, SuperH, SPARC, VAX, A29K, ARC, AVR, CRIS, D10V, D30V, FR-30, FR-V, Intel i960, M32R, 68HC11, Motorola 88000, MCORE, MN10200, MN10300, NS32K, Stormy16, V850 и Z8000. (Более новые выпуски не будут, вероятно, поддерживать некоторых из них.) Целевые платформы, на которых GNU Debugger не может быть запущен, в частности, встроенные системы, могут поддерживаться с помощью встроенного симулятора (процессоры ARM, AVR), либо приложения для них могут быть скомпилированы со специальными подпрограммами, обеспечивающими удалённую отладку под управлением GNU Debugger, запущенном на компьютере разработчика. Входным файлом для отладки, как правило, используется не прошиваемый двоичный файл, а файл в одном из поддерживающих отладочную информацию форматов, в первую очередь ELF, из которого впоследствии с помощью специальных утилит извлекается двоичный код для прошивки.

  • Удалённая отладка

При удалённой отладке GNU Debugger запускается на одной машине, а отлаживаемая программа запускается на другой. Связь осуществляется по специальному протоколу через последовательный порт или TCP/IP. Протокол взаимодействия с отладчиком специфичен для GNU Debugger, но исходные коды необходимых подпрограмм включены в архив отладчика. Как альтернатива, на целевой платформе может быть запущена использующая тот же протокол программа gdbserver из состава пакета GNU Debugger, исполняющая низкоуровневые функции вроде установки точек останова и доступа к регистрам и памяти.

Этот же режим используется для взаимодействия со встроенным отладчиком ядра Linux KGDB. С его помощью разработчик может отлаживать ядро как обычную программу: устанавливать точки останова, делать пошаговое исполнение кода, просматривать переменные. Встроенный отладчик требует наличия двух машин, соединенных через Ethernet или последовательный кабель, на одном из которых запущен GNU Debugger, на другом – отлаживаемое ядро.

  • Пользовательский интерфейс

В соответствии с идеологией ведущих разработчиков Free Software Foundation, GNU Debugger вместо собственного графического пользовательского интерфейса предоставляет возможность подключения к внешним IDE, управляющим графическим оболочкам либо использовать стандартный консольный текстовый интерфейс. Для сопряжения с внешними программами можно использовать язык текстовой строки (как это было сделано в первых версиях оболочки DDD), текстовый язык управления gdb/mi, либо интерфейс для языка .

Были созданы такие интерфейсы как DDD, cgdb, GDBtk/Insight и «GUD mode» в . С GNU Debugger могут взаимодействовать такие IDE, как

Перевод статьи Аллана О’Доннелла Learning C with GDB .

Исходя из особенностей таких высокоуровневых языков, как Ruby, Scheme или Haskell, изучение C может быть сложной задачей. В придачу к преодолению таких низкоуровневых особенностей C, как ручное управление памятью и указатели, вы еще должны обходиться без REPL . Как только Вы привыкнете к исследовательскому программированию в REPL, иметь дело с циклом написал-скомпилировал-запустил будет для Вас небольшим разочарованием.

Недавно мне пришло в голову, что я мог бы использовать GDB как псевдо-REPL для C. Я поэкспериментировал, используя GDB как инструмент для изучения языка, а не просто для отладки, и оказалось, что это очень весело.

Цель этого поста – показать Вам, что GDB является отличным инструментом для изучения С. Я познакомлю Вас с несколькими моими самыми любимыми командами из GDB, и продемонстрирую каким образом Вы можете использовать GDB, чтобы понять одну из сложных частей языка С: разницу между массивами и указателями.

Введение в GDB

Начнем с создания следующей небольшой программы на С – minimal.c :

Int main() { int i = 1337; return 0; }
Обратите внимание, что программа не делает абсолютно ничего, и даже не имеет ни одной команды printf . Теперь окунемся в новый мир изучения С используя GBD.

Скомпилируем эту программу с флагом -g для генерирования отладочной информации, с которой будет работать GDB, и подкинем ему эту самую информацию:

$ gcc -g minimal.c -o minimal $ gdb minimal
Теперь Вы должны молниеносно оказаться в командной строке GDB. Я обещал вам REPL, так получите:

(gdb) print 1 + 2 $1 = 3
Удивительно! print – это встроенная команда GDB, которая вычисляет результат С-ного выражения. Если Вы не знаете, что именно делает какая-то команда GDB, просто воспользуйтесь помощью – наберите help name-of-the-command в командной строке GDB.

Вот Вам более интересный пример:

(gbd) print (int) 2147483648 $2 = -2147483648
Я упущу разъяснение того, почему 2147483648 == -2147483648 . Главная суть здесь в том, что даже арифметика может быть коварная в С, а GDB отлично понимает арифметику С.

Теперь давайте поставим точку останова в функции main и запустим программу:

(gdb) break main (gdb) run
Программа остановилась на третьей строчке, как раз там, где инициализируется переменная i . Интересно то, что хотя переменная пока и не проинициализирована, но мы уже сейчас можем посмотреть ее значение, используя команду print :

(gdb) print i $3 = 32767
В С значение локальной неинициализированной переменной не определено, поэтому полученный Вами результат может отличаться.

Мы можем выполнить текущую строку кода, воспользовавшись командой next :

(gdb) next (gdb) print i $4 = 1337

Исследуем память используя команду X

Переменные в С – это непрерывные блоки памяти. При этом блок каждой переменной характеризуется двумя числами:

1. Числовой адрес первого байта в блоке.
2. Размер блока в байтах. Этот размер определяется типом переменной.

Одна из отличительных особенностей языка С в том, что у Вас есть прямой доступ к блоку памяти переменной. Оператор & дает нам адрес переменной в памяти, а sizeof вычисляет размер, занимаемый переменной памяти.

Вы можете поиграть с обеими возможностями в GDB:

(gdb) print &i $5 = (int *) 0x7fff5fbff584 (gdb) print sizeof(i) $6 = 4
Говоря нормальным языком, это значит, что переменная i размещается по адресу 0x7fff5fbff5b4 и занимает в памяти 4 байта.

Я уже упоминал выше, что размер переменной в памяти зависит от ее типа, да и вообще говоря, оператор sizeof может оперировать и самими типами данных:

(gdb) print sizeof(int) $7 = 4 (gdb) print sizeof(double) $8 = 8
Это означает, что по меньшей мере на моей машине, переменные типа int занимают четыре байта, а типа double – восемь байт.

В GDB есть мощный инструмент для непосредственного исследования памяти – команда x . Эта команда проверяет память, начиная с определенного адреса. Также она имеет ряд команд форматирования, которые обеспечиваю точный контроль над количеством байт, которые Вы захотите проверить, и над тем, в каком виде Вы захотите вывести их на экран. В случае каких либо трудностей, наберите help x в командной строке GDB.

Как Вы уже знаете, оператор & вычисляет адрес переменной, а это значит, что можно передать команде x значение &i и тем самым получить возможность взглянуть на отдельные байты, скрывающиеся за переменной i :

(gdb) x/4xb &i 0x7fff5fbff584: 0x39 0x05 0x00 0x00
Флаги форматирования указывают на то, что я хочу получить четыре (4 ) значения, выведенные в шестнадцатеричном (hex ) виде по одному байту (b yte). Я указал проверку только четырех байт, потому что именно столько занимает в памяти переменная i . Вывод показывает побайтовое представление переменной в памяти.

Но с побайтовым выводом связана одна тонкость, которую нужно постоянно держать в голове – на машинах Intel байты хранятся в порядке “от младшего к старшему ” (справа налево), в отличии от более привычной для человека записи, где младший байт должен был бы находиться в конце (слева направо).

Один из способов прояснить этот вопрос – это присвоить переменной i более интересное значение и опять проверить этот участок памяти:

(gdb) set var i = 0x12345678 (gdb) x/4xb &i 0x7fff5fbff584: 0x78 0x56 0x34 0x12

Исследуем память с командой ptype

Команда ptype возможно одна из моих самых любимых. Она показывает тип С-го выражения:

(gdb) ptype i type = int (gdb) ptype &i type = int * (gdb) ptype main type = int (void)
Типы в С могут становиться сложными , но ptype позволяет исследовать их в интерактивном режиме.

Указатели и массивы

Массивы являются на удивление тонким понятием в С. Суть этого пункта в том, чтобы написать простенькую программу, а затем прогонять ее через GDB, пока массивы не обретут какой-то смысл.

Итак, нам нужен код программы с массивом array.c :

Int main() { int a = {1, 2, 3}; return 0; }
Скомпилируйте ее с флагом -g , запустите в GDB, и с помощь next перейдите в строку инициализации:

$ gcc -g arrays.c -o arrays $ gdb arrays (gdb) break main (gdb) run (gdb) next
На этом этапе Вы сможете вывести содержимое переменной и выяснить ее тип:

(gdb) print a $1 = {1, 2, 3} (gdb) ptype a type = int
Теперь, когда наша программа правильно настроена в GDB, первое, что стоит сделать – это использовать команду x для того, чтобы увидеть, как выглядит переменная a “под капотом”:

(gdb) x/12xb &a 0x7fff5fbff56c: 0x01 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x7fff5fbff574: 0x03 0x00 0x00 0x00
Это означает, что участок памяти для массива a начинается по адресу 0x7fff5fbff56c . Первые четыре байта содержат a , следующие четыре – a , и последние четыре хранят a . Действительно, Вы можете проверить и убедится, что sizeof знает, что a занимает в памяти ровно двенадцать байт:

(gdb) print sizeof(a) $2 = 12
До этого момента массивы выглядят такими, какими и должны быть. У них есть соответствующий массивам типы и они хранят все значения в смежных участках памяти. Однако, в определенных ситуациях, массивы ведут себя очень схоже с указателями! К примеру, мы можем применять арифметические операции к a :

(gdb) print a + 1 $3 = (int *) 0x7fff5fbff570
Нормальными словами, это означает, что a + 1 – это указатель на int , который имеет адрес 0x7fff5fbff570 . К этому моменту Вы должны уже рефлекторно передавать указатели в команду x , итак посмотрим, что же получилось:

(gdb) x/4xb a + 1 0x7fff5fbff570: 0x02 0x00 0x00 0x00

Обратите внимание, что адрес 0x7fff5fbff570 ровно на четыре единицы больше, чем 0x7fff5fbff56c , то есть адрес первого байта массива a . Учитывая, что тип int занимает в памяти четыре байта, можно сделать вывод, что a + 1 указывает на a .

На самом деле, индексация массивов в С является синтаксическим сахаром для арифметики указателей: a[i] эквивалентно *(a + i) . Вы можете проверить это в GDB:

(gdb) print a $4 = 1 (gdb) print *(a + 0) $5 = 1 (gdb) print a $6 = 2 (gdb) print *(a + 1) $7 = 2 (gdb) print a $8 = 3 (gdb) print *(a + 2) $9 = 3
Итак, мы увидели, что в некоторых ситуациях a ведет себя как массив, а в некоторых – как указатель на свой первый элемент. Что же происходит?

Ответ состоит в следующем, когда имя массива используется в выражении в С, то оно “распадается (decay)” на указатель на первый элемент. Есть только два исключения из этого правила: когда имя массива передается в sizeof и когда имя массива используется с оператором взятия адреса & .

Тот факт, что имя a не распадается на указатель на первый элемент при использовании оператора & , порождает интересный вопрос: в чем же разница между указателем, на который распадается a и &a ?

Численно они оба представляют один и тот же адрес:

(gdb) x/4xb a 0x7fff5fbff56c: 0x01 0x00 0x00 0x00 (gdb) x/4xb &a 0x7fff5fbff56c: 0x01 0x00 0x00 0x00
Тем не менее, типы их различны. Как мы уже видели, имя массива распадается на указатель на его первый элемент и значит должно иметь тип int * . Что же касается типа &a , то мы можем спросить об этом GDB:

(gdb) ptype &a type = int (*)
Говоря проще, &a – это указатель на массив из трех целых чисел. Это имеет смысл: a не распадается при передаче оператору & и a имеет тип int .

Вы можете проследить различие между указателем, на который распадается a и операцией &a на примере того, как они ведут себя по отношению к арифметике указателей:

(gdb) print a + 1 $10 = (int *) 0x7fff5fbff570 (gdb) print &a + 1 $11 = (int (*)) 0x7fff5fbff578
Обратите внимание, что добавление 1 к a увеличивает адрес на четыре единицы, в то время, как прибавление 1 к &a добавляет к адресу двенадцать.

Указатель, на который на самом деле распадается a имеет вид &a :

(gdb) print &a $11 = (int *) 0x7fff5fbff56c

Заключение

Надеюсь, я убедил Вас, что GDB – это изящная исследовательская среда для изучения С. Она позволяет выводить значение выражений с помощью команды print , побайтово исследовать память командой x и работать с типами с помощью команды ptype .

1. Используйте GDB для работы над The Ksplice Pointer Challenge .
2. Разберитесь, как структуры хранятся в памяти. Как они соотносятся с массивами?
3. Используйте дизассемблерные команды GDB, чтобы лучше разобраться с программированием на ассемблере. Особенно весело исследовать, как работает стек вызова функции.
4. Зацените “TUI” режим GDB, который обеспечивает графическую ncurses надстройку над привычным GDB. На OS X, Вам вероятно придется собрать GDB из исходников.

От переводчика: Традиционно для указания ошибок воспользуйтесь ЛС. Буду рад конструктивной критике.

Введение

Откровенно говоря, программа GNU GDB довольно многофункциональная. Пошаговая от-лад-ка — лишь одна из ее возможностей. В этой статье я попытался описать те лишь команды GDB, которые позволяют проводить удобную пошаговую отладку программ, на-пи-сан-ных на Free Pascal.

Чтобы программу можно было отлаживать, она должна быть откомпилирована с ключом -g .

Поскольку GDB ориентирован не на Pascal, а на C и C++, то использование GDB для от-лад-ки Pascal-программ иногда сопряжено с неудобствами.

Приведу список подводных камней, обнаруженных мною и разработчиками Free Pascal (пе-ре-чис-лен-ных в user"s manual).

  1. Отладочная информация в Free Pascal генерируется в верхнем регистре. Поэтому имена всех переменных, процедур, функций при использовании GDB должны указываться БОЛЬШИМИ БУКВАМИ.
  2. GDB не воспринимает тип extended (ведь в C такого типа нет). Обойти эту неприятность можно, если, например, включить в код такие строки...
    type
    {$IFDEF DEBUG}
    dbl = double;
    {$ELSE}
    dbl = extended;
    {$ENDIF}
    ...

    var x: dbl;
    ...

  3. К элементам многомерных массивов нужно обращаться в C-шной манере, а именно, команда (gdb) print A выдаст первую строку массива A. Для просмотра требуемого элемента следует писать (gdb) print A
  4. GDB не воспринимает множества.
  5. Есть трудности с поддержкой объектов (см. user"s manual за подробностями).
  6. Есть трудности с глобально переопределенными функциями. (за подробностями см. user"s manual).
  7. При отладке процедур, функций, расположенных в разных файлах, часто возникает несоответствие — смещение строк. Та строка, которую GDB показывает текущей, таковой не является, а текущая расположена строк эдак на двадцать выше. Это приводит к большим неудобствам при пошаговой отладке. Я для себя сделал из этого такую мораль — хоть GDB и позволяет отлаживать процедуры, описанные в разных файлах, но лучше этой возможностью не пользоваться, а на время отладки все вызываемые процедуры, работа которых вас заинтересует, помещать в одном файле.

Все примеры отлаживались с использованием GNU GDB 5.0.

Запуск отладчика GDB

gdb [опции] [имя_файла | ID процесса]

После запуска видим "nice GDB logo" (если это почему-то раздражает, то опция -q поз-во-ля-ет не выводить это введение с ин-фор-ма-ци-ей об авторских правах и прочая). В следующей стро-ке приглашение
(gdb)
ждет ввода команды.

Ниже приводится краткий перечень команд GDB.

Краткую справку о любой команде можно получить, введя
(gdb) help [имя_команды, можно краткое]

Если при запуске GDB имя исполняемого файла не было указано (что следовало бы делать), то указать его можно командой file .

Команда file

(gdb) file <имя исполняемого файла, который подлежит отладке>


Для того, чтобы пролистать содержимое исходника, используйте команду list (сокращенно l ; бо льшая часть наиболее полезных ко-манд имеют сокращения). При этом под-ра-зу-ме-ва-ет-ся, что исходник расположен в том же каталоге, что и исполняемый файл. Как правило, так оно и есть.

Команда list (сокращенно l)

Пролистывает 10 строк вниз, начиная с текущей. Для пролистывания вверх следует набрать

Команда run (сокращенно r)

Запускает отлаживаемую программу под GDB. Если требуется, то после команды можно ука-зать список аргументов программы. Так-же допускается перенаправление потоков ввода и вы-во-да в другие файлы, например

(gdb) run > outfile

Если никаких точек останова не определено, то программа выполняется тихо, при этом нам со-об-ща-ет-ся:

(gdb) run
Starting program: test
Program exited normally.
(gdb)

Если же отладчик встречает точку останова, он выдает ее номер, адрес и дополнительную ин-фор-ма-цию — текущую строку, имя про-це-ду-ры, и т.п.

(gdb) r
Breakpoint 1, main () at test.pp:3
Current language: auto; currently pascal
3 x:= x + 1;
(gdb)

И ожидает ввода команды.

Остановка отладки программы

Команда kill (k). Следует запрос

(gdb) kill
Kill the program being debugged? (y or n) y
(gdb)

Здесь введено y (то есть "да"), и отладка программы прекращается. Командой run ее можно на-чать заново, при этом все точки ос-та-но-ва (breakpoints), точки просмотра (watchpoints) и точ-ки отлова (catchpoints) сохраняются.

Выход из отладчика

Команда quit (q).

(gdb) q
$

Точки останова


(gdb) help breakpoints

Точки останова — такие, когда GDB приостанавливает выполнение программы. Как уже упо-ми-на-лось, имеется 3 типа точек ос-та-но-ва:

  1. Breakpoints — точка останова как таковая. Остановка происходит, когда выполнение доходит до определенной строки, адреса или процедуры/функции.
  2. Watchpoints — точка просмотра. Выполнение программы приостанавливается, если программа обратилась к определенной переменной — либо считала ее значение, либо изменила его.
  3. Catchpoints — точка отлова. Приостановка происходит при определенном событии (например, получение сигнала). Я не буду касаться точек останова этого типа.

Определение точек останова

Breakpoint

Команда break
(gdb) break [аргумент]
или, сокращенно
(gdb) b [аргумент]
определяет точку останова. В качестве аргумента может выступать

  • номер строки . Остановка произойдет при достижении строки программы с этим номером. То, что написано в самой строке, выполняться не будет. Например (gdb) b 394 Breakpoint 1 at 0x805a650: file maeq.pas, line 394.
  • имя процедуры (функции) . Отладчик зайдет в эту процедуру и остановит выполнение программы. NB!! Имя процедуры (функции) должно быть указано БОЛЬШИМИ БУКВАМИ. Приведу пример: (gdb) b CALC Breakpoint 2 at 0x7657c7a: file maeq.pas, line 26.
  • если вызвать команду break без аргументов , то точка останова поставится на текущей строке.
  • также можно явно указывать адрес точки останова (перед адресом надо поставить знак *). Приведу лишь пример для полноты описания: (gdb) b *0x805a650 Breakpoint 3 at 0x805a650: file maeq.pas, line 394.

Допускается использование нескольких точек останова на одной строке (функции, адресе).

Watchpoint

Существуют различные виды точек просмотра, и задаются они различными командами:

  • команда watch (сокращенно wa) (gdb) wa <переменная> Выполнение программы приостанавливается всякий раз, когда значение указанной переменной изменяется.
  • команда rwatch (сокращенно rw) (gdb) rw <переменная> Выполнение приостанавливается всякий раз, когда программа считывает значение указанной переменной.
    NB!! Имя переменной должно быть указано БОЛЬШИМИ БУКВАМИ.
  • команда awatch (сокращенно aw) (gdb) aw <переменная> Выполнение приостанавливается всякий раз, когда программа обращается к указанной переменной, как для считывания, так и для записи.
    NB!! Имя переменной должно быть указано БОЛЬШИМИ БУКВАМИ.

Замечу от себя, что команды rwatch и awatch у меня почему-то капризничают — часто не ус-та-нав-ли-ва-ют точки просмотра на пе-ре-мен-ную. Зато команда watch работала всегда.

Управление точками останова

Информацию о всех установленных точках останова можно вывести командой info .

Команда info имеет много возможностей, но в данном случае воспользуемся лишь сле-дую-щим ее форматом:
(gdb) info breakpoints
или, кратко
(gdb) i b

Выводится подробная информация о всех точках останова (как breakpoints, так и watch-points), включающая - номер - breakpoint или watchpoint - активность - сколько раз прог-рам-ма натыкалась на эту точку - иные характеристики, значение которых мне не со-всем понятно

Если какая-то точка останова не нужна, то ее можно сделать неактивной с помощью ко-ман-ды disable:

(gdb) disable breakpoint <номер этой точки>

Обратно, деактивированная точка останова активируется командой enable:

(gdb) enable breakpoint <номер этой точки>

Статус точки останова — активна она или нет, легко обозреть той же командой info .

Если же точка останова не требуется вообще, то она может быть удалена насовсем.

(gdb) delete breakpoint [номер точки]

(gdb) d b [номер точки]

Ввод этой команды без аргумента удалит ВСЕ точки останова.

Возобновление выполнения, пошаговая отладка

Информацию о командах этого раздела можно получить, введя

(gdb) help running

Команда continue (c)

(gdb) с [аргумент]

Продолжает выполнение остановленной программы. Выполнение будет происходить, пока сно-ва не встретится точка останова. В ка-чест-ве аргумента может использоваться целое чис-ло N. Это укажет отладчику проигнорировать (N-1) точку останова (вы-пол-не-ние остановится на N-ой).

Команда step (s)

(gdb) s [аргумент]

Аналог действия клавиши F7 (Trace into) в IDE. Происходит выполнение программы до тех пор, пока не будет достигнута сле-дую-щая строка ее кода. При указании аргумента — це-ло-го чис-ла N, отладчик выполняет команду step N раз (если не останавливает вы-пол-не-ние из-за точек останова или по иным причинам).

Команда next (n)

(gdb) n [аргумент]

Аналог действия клавиши F8 (Step over) в IDE. В отличие от step вызов процедуры счи-та-ет-ся единой инструкцией (не заходит в вы-зы-вае-мые процедуры, функции). Аргумент N ра-бо-та-ет так же, как и для step .

Команда finish (fin)

(gdb) fin

Выполняет программу до момента выхода из текущей процедуры (функции). Если функция воз-вра-ща-ет значение, то это значение вы-во-дит-ся тоже.

Команда until (u)

Производит выполнение программы до тех пор, пока не будет достигнута строка с номером, бо ль-шим текущего. Команду until удоб-но применять при отладке циклов. Остановка про-и-зой-дет также, если программа при выполнении цикла выйдет из текущей про-це-ду-ры, функ-ции.

Команда stepi (si)

(gdb) si [аргумент]

Действие подобно step , но выполняется не строка, а ровно одна инструкция в этой строке прог-рам-мы. Аргумент N нужен, если тре-бу-ет-ся выполнить N инструкций.

Команда nexti (ni)

(gdb) ni [аргумент]

Аналогична stepi , но вызовы процедур трактуются как одна инструкция.

Управление состоянием (просмотр, изменение) переменных при отладке

Информацию о командах этого раздела можно получить, введя

(gdb) help data

Команда print (p)

(gdb) print <выражение>

Вывод текущего значения переменной (выражения). При использовании команды print имя пе-ре-мен-ной можно писать в сме-шан-ном регистре, то есть в этом случае использование боль-ших букв обязательным не является.

Часто требуется отслеживать значения нескольких переменных. Чтобы не утруждать себя мно-го-крат-ным вводом команды print , ис-поль-зуй-те команду display .

Команда display

(gdb) display [аргумент]

В качестве аргумента обычно указывают переменную или выражение. При этом указанная пе-ре-мен-ная (выражение) занесется в дис-плей, то есть станет выводиться при каждой ос-та-нов-ке программы (при попадании на точку останова, при пошаговом вы-пол-не-нии командами step и next , etc). Если вызвать display без аргументов, то GDB выдаст значения всех пе-ре-мен-ных (вы-ра-же-ний), занесенных в дисплей.

Управление списком этих переменных осуществляется аналогично точкам останова. А имен-но, команда info display

(gdb) info display

выдаст все переменные, занесенные в дисплей. Любая переменная в списке дисплея может быть дезактивирована

(gdb) disable display <номер переменной в списке дисплея>

или активирована заново

(gdb) enable display <номер переменной в списке дисплея>

Удаление переменной из списка дисплея производится командой delete или командой undisplay . Так, команда

(gdb) delete display [номер переменной в списке дисплея]

делает то же, что и

(gdb) undisplay [номер переменной в списке дисплея]

Опять-таки, если не указать номер переменной, то очистится весь список отображаемых пе-ре-мен-ных.

Изменение значения переменной

И последнее. Изменение значения переменной на другое можно, например, произвести с по-мощью команд set или print .

(gdb) set <оператор присваивания> (gdb) print <оператор присваивания>

Например,

(gdb) whatis x
TYPE = WORD
(gdb) p x
$1 = 1
(gdb) set x:=2
(gdb)

При использовании set присваивание происходит "тихо". То же самое можно сделать, но с по-мощью команды print .

Например,

(gdb) p x
$2 = 2
(gdb) p x:=x-2
$3 = 0
(gdb)

При этом, как видно, выводится новое значение переменной.

Вот и все.

Удачной отладки!