Мощные линейные и шим усилители. Класс с. Расчет коэффициента заполнения ШИМ

Коэффициент полезного действия является основным параметром для усилителей мощности звуковой частоты. Особенно это важно для портативной аппаратуры, такой как радиоприемники или сотовые телефоны. Усилители с высоким к.п.д. применяются и в стационарных устройствах, таких как компьютеры или телевизоры. Усилители класса C позволяет получить достаточно большие значения к.п.д. но их невозможно использовать для усиления звуковых сигналов.

Основным параметром, определяющим потребление энергии выходным усилительным каскадом, является мощность, рассеиваемая на его транзисторах. При этом мощность не будет рассеиваться в двух случаях:

  1. ток через транзистор при ненулевом напряжении равен нулю;
  2. напряжение на транзисторе при ненулевом токе равно нулю.

Эти условия выполняются при работе транзистора в ключевом режиме. Первое условие будет выполнено, если транзистор полностью закрыть (режим отсечки). Второе условие будет выполнено, если транзистор полностью открыть (режим насыщения). Так работают транзисторы в цифровых микросхемах, например КМОП логики.

Но ведь в этом случае амплитуда сигнала на выходе будет иметь только два уровня. Для того чтобы можно было получить амплитуду сигнала, соответствующую входной, на выходе усилителя звука, в ключевом режиме используется широтно-импульсная модуляция — ШИМ.

Широтно-импульсная модуляция реализуется при помощи компаратора, на входы которого подаются полезный сигнал и пилообразное напряжение. В результате ширина импульса на его выходе будет пропорциональна амплитуде полезного сигнала. Данный процесс иллюстрируется рисунком 1.


Рисунок 1. Процесс формирования ШИМ

Как видно из рисунка 1, средний уровень сигнала зависит от ширины импульсов. Чем она меньше — тем меньше будет средний уровень сигнала, чем больше — тем больше. В спектре широтно-импульсной модуляции присутствует исходный низкочастотный звуковой сигнал, поэтому обратное преобразование ШИМ в аналоговый сигнал осуществляется любым фильтром низкой частоты. Достаточно отфильтровать высокочастотные составляющие двухуровневого сигнала и усиленный первоначальный сигнал можно подавать на громкоговоритель. Спектр широтно-импульсной модуляции синусоидального сигнала приведен на рисунке 2.


Рисунок 2. Спектр сигнала ШИМ

Так как мощность на выходе усилителя мощности обычно составляет значение от единиц до сотен ватт, то обычно применяются LC фильтры. Задача фильтра заключается в подавлении частоты пилообразного сигнала, модулированного полезным сигналом и его гармоник. Для того, чтобы можно было применить простейший фильтр второго порядка, частоту пилообразного сигнала выбирают в пределах двух мегагерц. Так как частота модулирующего сигнала превышает верхнюю частоту звукового спектра в 100 раз, то фильтр второго порядка, состоящий из индуктивности и конденсатора, способен подавить мешающие сигналы на 80 дБ (при соответствующем конструктивном исполнении).

Усилителя низкой частоты, работающего в режиме класса D, приведена на рисунке 3



Рисунок 3. Типовая структурная схема усилителя класса D

Данная схема состоит из входного усилителя, обеспечивающего требуемое входное сопротивление, компаратора напряжения, на второй вход которого подается пилообразное напряжение и выходного каскада, собранного на комплементарных полевых транзисторах. Именно эти транзисторы и обеспечивают необходимую выходную мощность. Их быстродействие определяет к.п.д. усилителя. Для оценки коэффициента полезного действия можно воспользоваться зависимостью рассеиваемой мощности от выходной мощности. На рисунке 4 приведены характеристики микросхем усилителя класса D фирмы Texas Instruments TPA2012D2.


Рисунок 4. Сравнение рассеиваемой мощности усилителей класса AB и D

Микросхемы подобного класса предназначены для применения в портативной аппаратуре. В таблице 1 приведены некоторые из таких микросхем. Обратите внимание на очень низкие этих микросхем.

Наименование Описание Стерео/моно Pвых, Вт Rнагр. (min), Ом Напряжение питания, B Нелин. искаж. на мощн. P/2 THD+N* (%), f=1кГц Коэфф. подавл. помех по цепям питания дБ Корпус
(min) (max)
TPA2017D2 SmartGain, AGC/DRC, GPIO интерфейс Стерео 2,8 4 2,5 5,5 0,2 80 QFN-20
TPA2000D2 усилитель средней мощности Стерео 2,5 3 4,5 5,5 0,05 77 TSSOP-24
TPA2000D4 усилитель для стерео телефонов Стерео 2,5 4 3,7 5,5 0,1 70 TSSOP-32
TPA2012D2 усилитель в корпусе WCSP 2 x 2 мм Стерео 2,1 4 2,5 5,5 0,2 75 WCSP-16, QFN-20
TPA2016D2 SmartGain, AGC/DRC, I2C интерфейс Стерео 1,7 8 2,5 5,5 0,2 80 WCSP-16
TPA2001D2 усилитель низкой мощности Стерео 1,25 8 4,5 5,5 0,08 77 TSSOP-24
TPA2100P1 для пьзокерам. излучателя Моно 19 Vpp 1,5 мкФ (пьезо) 2,5 5,5 0,2 90 WCSP-16
TPA2035D1 дифф. вход, 1,5 х 1,5 мм Моно 2,75 4 2,5 5,5 0,2 75 WCSP-9

Несколько другой подход для построения усилителей класса D использует фирма Analog devices. В ее микросхемах вместо ШИМ модулятора используется сигма-дельта модулятор. Это позволяет поднять внутреннюю частоту до такого значения, что внешний фильтр низкой частоты не требуется. Его функции выполняет динамик. Внутренняя схема подобной микросхемы приведена на рисунке 5.



Рисунок 5. Внутренняя схема микросхемы SSM2317

В настоящее время выпускается достаточно большое количество микросхем усилителей класса D большой мощности. В качестве примера можно назвать разработки фирм MPS (Monolithic Power Systems) и Texas Instruments

Наименование Описание Pвых, Вт Rнагр. (min), Ом Напряжение питания, B Нелинейные искажения на половинной мощности THD+N* (%), f=1кГц Коэффициент подавления помех по цепям питания дБ Корпус
(min) (max)
TAS5630B 300 Вт усилитель (стерео) с ОС 400 2 25 52,5 0,03 80 QFP-64, PSOP-44
TAS5615A 160 Вт усилитель (стерео) с ОС 300 2 18 38 0,03 80 QFP-64, PSOP-44
MP7720 20 Вт усилитель (моно) 20 4 9,5 24 0,04 60 SOIC-8
MP7781 80 Вт усилитель 80 4 18 38 0,1 60 SOIC-24

Следует отметить, что подобные схемы практически не требуют громоздких радиаторов, рассеивающих избыточное тепло. На рисунке 6 приведена типовая принципиальная схема усилителя звуковых частот класса D.



Рисунок 6. Принципиальная схема звукового усилителя мощности класса D на микросхеме МР7720

В данной схеме резисторы R4 и R1 определяют глубину отрицательной обратной связи, которая влияет на коэффициент усиления усилителя и его нелинейные искажения. Резисторы R3 и R2 задают режим работы на входе микросхемы по постоянному току (половина питания). Диоды D1 и D2 защищают выходной каскад от перенапряжения. Фильтр, выделяющий из ШИМ звуковой сигнал собран на индуктивности L1 и конденсаторе C8. Емкости C1 и C9 являются разделительными.

Литература:

Вместе со статьей "Усилитель класса D" читают:


http://сайт/Sxemoteh/RejRab/


http://сайт/Sxemoteh/RejRab/A/


http://сайт/Sxemoteh/RejRab/Berg/


http://сайт/Sxemoteh/RejRab/B/

Hugo Letourneau, Future Electronics

Истинные аудиофилы всегда мечтали сконструировать идеальный усилитель, абсолютно достоверно воспроизводящий каждый звук, записанный на студии. Возможно, они начали мечтать об этом, когда, получив первые уроки электроники, узнали, что топология класса A дает великолепные результаты с точки зрения линейности. Иногда горячие студенты, невзирая на предупреждения своих учителей, пытались изобрести велосипед, посвятив себя созданию усилителя класса A с выходной мощностью 150 Вт на канал, чтобы поразить всех друзей мощным и совершенным звуком. И каждый раз, когда разработка подходила к финальной стадии, выяснялось, что усилитель, по большому счету, представляет собой мощный обогреватель, а его корпус является раскаленным радиатором для транзисторов выходного каскада.

Затем эти студенты начинали увлекаться вопросами снижения энергопотребления, и делали усилители класса B или AB, а наиболее усердные, исследовав все топологии, останавливались на классе D. Для новичков в конструировании усилителей сообщим. В усилителе класса A выходной транзистор усиливает весь сигнал, т.е., 360°. В системах класса B каждый транзистор усиливает только одну полуволну сигнала, или 180°.

Усилители класса AB занимают промежуточное положение с диапазоном, примерно, от 180° до 270°, в зависимости от тока покоя выходного каскада. Усилители класса D часто называют «цифровыми» усилителями, так как выходные транзисторы работают в ключевом режиме, генерируя прямоугольные импульсы, а выходной сигнал на громкоговорители подается через фильтры. Основное преимущество топологии класса D - обусловленный ее цифровым характером высокий КПД, который может превышать 90%. Типовые схемы для каждой топологии выходного каскада показаны на Рисунке 1.

Усилители класса D известны более 25 лет, но настоящую популярность приобрели лишь 10-15 лет назад, или около того. Из за их высокого КПД, они использовались, главным образом, на низких частотах при больших уровнях мощности, т.е., для управления сабвуферами, и очень редко - в средне- и высокочастотных приложениях, вследствие значительных искажений, связанных с несовершенством технологии переключающих схем того времени.

Чтобы сделать усилитель класса D с приличным звучанием, необходимо учесть множество параметров, не пропустив ни одного элемента в цепи прохождения сигнала. Без этого не удастся добиться хороших звуковых характеристик во всем диапазоне частот. На Рисунке 2 изображена простая блок-схема типичного цифрового усилителя. Каждый прямоугольник этой блок-схемы должен быть тщательно выверен и согласован с остальными. Лишь в этом случае можно достичь определенного баланса и создать усилитель, отвечающий требованиям нашего уха.

Каскад ШИМ-модулятора

ШИМ сигнал можно получить с помощью как аналоговой, так и цифровой схемы, точно так же, как аналоговым или цифровым может быть источник звука. Проще всего получить сигнал ШИМ сравнением треугольного напряжения со звуковым сигналом, как это показано на Рисунке 3. Если источник сигнала цифровой, превратить импульсно-кодовую модуляцию в ШИМ можно, используя цифровой сигнальный процессор. В любом случае, первостепенное значение для формирования ШИМ сигнала имеют величина джиттера и стабильность всех генераторов, так как несколько пикосекунд среднеквадратичного значения джиттера навсегда похоронят мечты о создании усилителя c отношением сигнал/шум лучше 100 дБ. В цифровых ШИМ системах добавляется ошибка квантования, порождаемая конечным числом уровней ШИМ.

Методы формирования шумов совершенствовались на протяжении многих лет, в результате чего появились новые технологии, такие, как PDM (pulse-density modulation - плотностно-импульсная модуляция) и дельта-сигма модуляция, которые, теоретически, позволяют сместить спектр шумов дискретизации далеко за область полезных частот, где они могут быть эффективно подавлены фильтрами.

Компаратор должен иметь большую скорость нарастания напряжения и, желательно, двухтактный выходной каскад. Хороший выбор - микросхема , имеющая время задержки распространения сигнала 45 нс и время нарастания/спада 1.2 нс. Немаловажное значение имеет качество трассировки печатной платы, чтобы предотвратить возникновение «звона». Помимо этого, весьма критична топология распределения шин питания и развязывающих конденсаторов. Небрежность в этом вопросе может приводить к увеличению уровня джиттера выходного сигнала. Следует, также, избегать чрезмерной емкостной нагрузки на линию, соединяющую выход модулятора с драйвером MOSFET транзисторов.

Несимметричный или дифференциальный?

Прежде чем выбирать, каким будет выходной каскад, - несимметричным или дифференциальным, - очень важно понять влияние этого выбора на характеристики конструкции. Несимметричный режим выгоднее с точки зрения количества и цены компонентов, но для предотвращения постоянного смещения выхода потребуется развязывающий конденсатор. Кроме того, все колебания напряжения питания неизбежно передаются прямо на выход, еще более увеличивая уровень искажений. Поэтому использовать несимметричную схему без обратной связи невозможно.

Дифференциальный режим затратнее, но дает много преимуществ, таких как меньший уровень четных гармоник, улучшенная устойчивость к колебаниям питающего напряжения, меньшая мощность, рассеиваемая каждым транзистором, и более простое решение задачи устранения постоянного смещения, не требующее развязывающих конденсаторов. Обратная связь может улучшить выходной сигнал, однако дифференциальная топология без обратной связи искажает сигнал намного меньше, чем несимметричная.

Выходной MOSFET каскад и драйвер

В схеме, изображенной на Рисунке 2, важны все элементы, но два из них оказывают наибольшее влияние на искажения выходного сигнала. Это MOSFET транзисторы и их драйвер. Качество звука очень зависит от формы импульсной последовательности, и любое отклонение ШИМ сигнала от идеального ухудшает его качество.

Для этого каскада важны, и должны быть рассмотрены, многие характеристики MOSFET транзисторов:

  • ток управления и входная емкость;
  • мертвое время (что важно для исключения сквозных токов);
  • сопротивление открытого канала;
  • время включения/выключения.

Любой из этих параметров влияет не только на качество звука, но и на рассеиваемую транзисторами мощность. «Мертвое время» - это задержка между выключением одного транзистора и включением другого, время, в течение которого оба транзистора выключены (или находятся в процессе выключения). При отсутствии мертвого времени, скорее всего, будет возникать ситуация, когда один транзистор выходного каскада уже открыт, а другой еще не закрыт, вследствие чего ток от положительной шины питания будет протекать к отрицательной шине напрямую через два открытых транзистора. Этот ток называется сквозным и должен быть минимизирован подбором соответствующего мертвого времени. Сквозной ток является основной причиной нелинейных искажений в системах класса D. Недостаточное мертвое время может ухудшить коэффициент нелинейных искажений на проценты. Выбор MOSFET транзисторов и симметрия плеч выходного каскада - важнейший момент в проектировании высококачественного усилителя.

Ток управления затвором MOSFET транзистора должен соответствовать его емкости, чтобы иметь малые времена нарастания и спада импульсов на входе транзистора, которые, в свою очередь, обеспечат крутые фронты в выходном сигнале. В свою очередь, источник питания должен быть способен отдавать большие импульсные токи.

Мощность рассеивания и правильный выбор MOSFET транзистора

Транзисторы в переключающих каскадах класса D преобладающую часть времени полностью открыты или полностью закрыты, и рассеиваемая ими мощность минимальна. Как видно из Рисунка 1, в системах класса D используются двухтактные, каскады, в полу- или полномостовой конфигурации, выходными сигналами которых являются прямоугольные импульсы. При этом поочередно, равное время, открыт то один MOSFET транзистор, подключенный к положительной шине питания, то другой, подключенный к отрицательной шине. Теоретически, это могут быть два разных транзистора, с каналами N и P типа, но практически предпочтительнее использовать сдвоенные N-канальные транзисторы, обеспечивающие повышенную симметрию и лучшее мертвое время. Включенный MOSFET транзистор рассеивает очень небольшую мощность, являющуюся функцией прямого падения напряжения, зависящего, в свою очередь, от сопротивления открытого канала R DS(ON) . Это имеет огромное значение, не только с точки зрения экономии энергии, но, прежде всего, с точки зрения габаритов схемы. К примеру, выходной каскад 100-ваттного усилителя класса A рассеивает в виде тепла мощность 300 Вт и требует очень больших транзисторов и теплоотводов, усилитель класса AB вполне можно сделать, используя транзисторы в корпусах TO3 и радиаторы традиционных размеров, а для усилителя класса D будет достаточно транзисторов в корпусах SOT223 или TO89. А это означает, что хороший усилитель мощности может иметь относительно небольшие размеры, которые, по мере развития технологии, будут постоянно уменьшаться, благодаря росту эффективности и снижению габаритов используемых приборов.

Одна из распространенных ошибок заключается в том, что, стремясь к наивысшей эффективности, разработчики выбирают MOSFET транзисторы с наименьшим значением R DS(ON) и ожидают, что транзисторы будут совершенно холодными. В реальности все может быть совершенно по-другому.

P D = P RESISTIVE + P SWITCHING = R DS(ON) × I LOAD 2 + (C RSS × V 2 × F SW × I LOAD) / I GATE

I LOAD - ток нагрузки
C RSS - емкость затвора
V - размах напряжения на нагрузке
F SW - частота переключения
I GATE - ток затвора

К примеру, давайте представим, что для выходного каскада мощностью 100 Вт мы выбрали замечательный транзистор фирмы , имеющий R DS(ON) = 3.9 мОм и C RSS = 455 пФ, который управляется MOSFET драйвером с выходным током 1 А. Каскад нагружен сопротивлением 8 Ом, размах напряжения на нагрузке 50 В при частоте сигнала 100 кГц. Рассеиваемая транзисторами мощность не превысит:

P D = 0.0039×5 А + (455×10 -12 ×50 2 ×100×10 3 ×5 А) / 1 А = 0.0195 + 0.568 = 0.588 Вт

Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо

ШИМ контроллер. Синхронизация. Обратная связь. Задание частоты. (10+)

Широтно-импульсная модуляция - ШИМ контроллер. Частота. Усилитель ошибки

Резистор и конденсатор, задающие частоту работы контроллера (RT, CT) . Контроллер работает на определенной частоте. Импульсы следуют с этой частотой. Контроллер меняет длительность импульсов, но не частоту. Это значит, что чем короче импульс, тем длиннее пауза и наоборот, а частота следования остается постоянной. Конденсатор, подключенный между CT и общим проводом, и резистор, подключенный между RT и общим проводом, задают частоту работы контроллера.

Импульсы синхронизации (CLOCK) . Иногда необходимо заставить работать несколько контроллеров синхронно. Тогда к одному контроллеру (ведущему) подключают частотозадающие конденсатор и резистор. На ножке CLOCK ведущего контроллера появляются короткие импульсы напряжения. Эти импульсы подаются на ножки CLOCK других контроллеров (ведомых). Ножки RT ведомых контроллеров соединяются с VREF этих контроллеров, а ножки CT - с общим проводом.

Напряжение для сравнения (RAMP) . На эту ножку нужно подать пилообразное напряжение. В момент возникновения импульса синхронизации на выходе контроллера появляется открывающее управляющее напряжение. Далее, как только напряжение на RAMP превышает напряжение на выходе усилителя ошибки на определенную величину, на выходе возникает закрывающее напряжение. Так что импульс длится от момента синхронизационного импульса до момента превышения напряжения на RAMP над напряжением выхода усилителя ошибки. Этим и достигается ШИМ. В классической схеме на RAMP подается напряжение с CT. Там как раз отличная пила. Есть и другие варианты включения.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

Какая минимальная длинна импульса возможна в шим контроллерах (минимальный коэф фициент заполнения)? На практике получается что, к примеру, sg3525 запускается с минимальной шириной примерно 1 микросекунда. Есть ли методика расчета этого параметра? Очень актуально при разработке импульсных блоков питания с регулировкой напряжения от нуля вольт.

Фотореле. Автоматическое управление освещением. Световое реле. Автомат...
Автоматическое управление освещением. Включение вручную или при снижении освещен...

Металлоискатель самодельный. Сделать, собрать самому, своими руками. С...
Схема металлоискателя с высокой разрешающей способностью. Описание сборки и нала...

Полумостовой импульсный стабилизированный преобразователь напряжения, ...
Полумостовой преобразователь напряжения сети. Схема, онлайн расчет. Форма для вы...


ШИМ или PWM (англ. Pulse-Width Modulation) — широтно-импульсная модуляция — это метод предназначен для контроля величины напряжения и тока. Действие ШИМ заключается в изменении ширины импульса постоянной амплитуды и постоянной частотой.

Свойства ШИМ регулирования используются в импульсных преобразователях, в схемах управления двигателями постоянного тока или яркостью свечения светодиодов.

Принцип действия ШИМ

Принцип действия ШИМ, как указывает на это само название, заключается в изменении ширины импульса сигнала. При использовании метода широтно-импульсной модуляции, частота сигнала и амплитуда остаются постоянными. Самым важным параметром сигнала ШИМ является коэффициент заполнения, который можно определить по следующей формуле:

Также можно отметить, что сумма времени высокого и низкого сигнала определяет период сигнала:

где:

  • Ton — время высокого уровня
  • Toff — время низкого уровня
  • T — период сигнала

Время высокого уровня и время низкого уровня сигнала показано на нижнем рисунке. Напряжение U1- это состояния высокого уровня сигнала, то есть его амплитуда.

На следующем рисунке представлен пример сигнала ШИМ с определенным временным интервалом высокого и низкого уровня.

Расчет коэффициента заполнения ШИМ

Расчет коэффициента заполнения ШИМ на примере:

Для расчета процентного коэффициента заполнения необходимо выполнить аналогичные вычисления, а результат умножить на 100%:

Как следует из расчета, на данном примере, сигнал (высокого уровня) характеризуется заполнением, равным 0,357 или иначе 37,5%. Коэффициент заполнения является абстрактным значением.

Важной характеристикой широтно-импульсной модуляции может быть также частота сигнала, которая рассчитывается по формуле:

Значение T, в нашем примере, следует взять уже в секундах для того, чтобы совпали единицы в формуле. Поскольку, формула частоты имеет вид 1/сек, поэтому 800ms переведем в 0,8 сек.

Благодаря возможности регулировки ширины импульса можно изменять, например, среднее значение напряжения. На рисунке ниже показаны различные коэффициенты заполнения при сохранении той же частоты сигналов и одной и той же амплитуды.

Для вычисления среднего значения напряжения ШИМ необходимо знать коэффициент заполнения, поскольку среднее значение напряжения является произведением коэффициента заполнения и амплитуды напряжения сигнала.
Для примера, коэффициент заполнения был равен 37,5% (0,357) и амплитуда напряжения U1 = 12В даст среднее напряжение Uср:

В этом случае среднее напряжение сигнала ШИМ составляет 4,5 В.

ШИМ дает очень простую возможность понижать напряжение в диапазоне от напряжения питания U1 и до 0. Это можно использовать, например, для , или скорости вращения двигателя DC (постоянного тока), питающиеся от величины среднего напряжения.

Сигнал ШИМ может быть сформирован микроконтроллером или аналоговой схемой. Сигнал от таких схем характеризуется низким напряжением и очень малым выходным током. В случае необходимости регулирования мощных нагрузок, следует использовать систему управления, например, с помощью транзистора.

Это может быть биполярный или полевой транзистор. На следующих примерах будет использован .



Пример управления светодиодом при помощи ШИМ.

Сигнал ШИМ поступает на базу транзистора VT1 через резистор R1, иначе говоря, транзистор VT1 с изменением сигнала то включается, то выключается. Это подобно ситуации, при которой транзистор можно заменить обычным выключателем, как показано ниже:


Когда переключатель замкнут, светодиод питается через резистор R2 (ограничивающий ток) напряжением 12В. А когда переключатель разомкнут, цепь прерывается, и светодиод гаснет. Такие переключения с малой частотой в результате дадут .

Однако, если необходимо управлять интенсивностью свечения светодиодов необходимо увеличить частоту сигнала ШИМ, так, чтобы обмануть человеческий глаз. Теоретически переключения с частотой 50 Гц уже не незаметны для человеческого глаза, что в результате дает эффект уменьшения яркости свечения светодиода.

Чем меньше коэффициент заполнения, тем слабее будет светиться светодиод, поскольку во время одного периода светодиод будет гореть меньшее время.

Такой же принцип и подобную схему можно использовать и для . В случае двигателя необходимо, однако, применять более высокую частоту переключений (выше 15-20 кГц) по двум причинам.

Первая из них касается звука, какой может издавать двигатель (неприятный писк). Частота 15-20 кГц является теоретической границей слышимости человеческого уха, поэтому частоты выше этой границы будут неслышны.

Второй вопрос касается стабильности работы двигателя. При управлении двигателем низкочастотным сигналом с малым коэффициентом заполнения, обороты двигателя будут нестабильны или может привести к его полной остановке. Поэтому, чем выше частота сигнала ШИМ, тем выше стабильность среднего выходного напряжения. Также меньше пульсаций напряжения.

Не следует, однако, слишком завышать частоту сигнала ШИМ, так как при больших частотах транзистор может не успеть полностью открыться или закрыться, и схема управления будет работать не правильно. Особенно это относится к полевым транзисторам, где время перезарядки может быть относительно большое, в зависимости от конструкции.

Слишком высокая частота сигнала ШИМ также вызывает увеличение потерь на транзисторе, поскольку каждое переключение вызывает потери энергии. Управляя большими токами на высоких частотах необходимо подобрать быстродействующий транзистор с низким сопротивлением проводимости.

Управляя , следует помнить о применении диода для защиты транзистор VТ1 от индукционных всплесков, появляющимся в момент выключения транзистора. Благодаря использованию диода, индукционный импульс разряжается через него и внутреннее сопротивление двигателя, защищая тем самым транзистор.



Схема системы управления скоростью вращения двигателя постоянного тока с защитным диодом.

Для сглаживания всплесков питания между клеммами двигателя, можно подключить к ним параллельно конденсатор небольшой емкости (100nF), который будет стабилизировать напряжение между последовательными переключениями транзистора. Это также снизит помехи, создаваемые частыми переключениями транзистора VT1.