Arduino Nano V3.0 — Характеристики, распиновка, драйвера, описание платы. Выбор платы и порта

Платформа Arduino Nano (рус. Ардуино Нано) — открытая и компактная платформа с семейства Arduino, построенная на микроконтроллере ATmega328 (Arduino Nano 3.0) или ATmega168 (Arduino Nano 2.x), имеет небольшие размеры и может использоваться в лабораторных работах.

Arduino Nano — это уменьшенный аналог , отличается формфактором платы, которая в 2-2.5 раза меньше (19 x 43 мм), чем Arduino Uno (53 х 69 мм), в отсутствии силового разъема постоянного тока и работе через кабель Mini-B USB. Платформа Nano имеет контакты в виде пинов, поэтому ее легко устанавливать на макетную плату.

На плате используется чип FTDI FT232RL для USB-Serial преобразования и применяется mini-USB кабель для связи с ардуино вместо стандартного. Связь с различными устройствами обеспечивают UART, I2C и SPI интерфейсы.



Микроконтроллер ATmega328P
Рабочее напряжение 5 В
7-12 В
6-20В
Цифровые входы/выходы
Аналоговые входы 8
ШИМ (PWM) пины
6
40 мА
50 мА
Flash-память 32 Кб из которых 2 Кб используются загрузчиком
SRAM 2 Кб
EEPROM 1 Кб
Тактовая частота 16 МГц
Встроенный светодиод 13
Длина 45.0 мм
Ширина 18.0 мм
Вес 7 г

Принципиальная схема

Характеристики Arduino Nano V2.3 ATmega168PA

Микроконтроллер ATmega168PA
Рабочее напряжение 5 В
Напряжение питания (рекомендуемое) 7-12 В
Напряжение питания (предельное) 6-20 В
Цифровые входы/выходы 14 (6 из которых могут использоваться как выходы ШИМ)
Аналоговые входы 8
ШИМ (PWM) пины
6
Постоянный ток через вход/выход 40 мА
Максимальный выходной ток вывода 3.3V 50 мА
Flash-память 16 Кб из которых 2 Кб используются загрузчиком
SRAM 1 Кб
EEPROM 512 байт
Тактовая частота 16 МГц
Встроенный светодиод 13
Длина 42.0 мм
Ширина 18.5 мм
Вес 7 г

Принципиальная схема

Arduino Nano CH340G V3.0

Этот вариант Ардуино-контроллера является миниатюрной версией . Его 30 выводов полностью повторяют выводы UNO и имеют два дополнительных налоговых входа А6 и А7. USB-TTL мост и USB-mini разъем позволяют проводить полноценную отладку непосредственно из среды разработки. USB-мост CH340G требует установки на компьютер драйвера, который можно скачать .

Благодаря интерфейсу USB-UART реализован на базе микросхемы CH340G, данная версия Arduino Nano сильно дешевле, чем её аналог на базе микросхемы FT232RL.

Описание элементов платы Arduino Nano V3

  • USB Jack – разъем USB Mini-B для подключения устройств USB;
  • Analog Reference Pin – для определения опорного напряжения АЦП;
  • Ground – земля;
  • Digital Pins (2-13) – цифровые выводы;
  • TXD – пин передачи данных по UART;
  • RXD – пин приема данных по UART;
  • Reset Button – кнопка перезагрузки микроконтроллера;
  • ISCP (In-Circuit Serial Programmer) – контакты для перепрограммирования платы;
  • Microcontroller ATmega328P – микроконтроллер — главный элемент на плате;
  • Analog Input Pins (A0-A7) – аналоговые входы;
  • Vin – вход используется для подачи питания от внешнего источника;
  • Ground Pins – земля;
  • 5 Volt Power Pin – питание 5 В;
  • 3 Volt Power Pin – питание 3.3 В;
  • RST – вход для перезагрузки;
  • SMD Crystal – кварцевый резонатор (жарг. «кварц») — прибор, в котором пьезоэлектрический эффект и явление механического резонанса используются для построения высокодобротного резонансного элемента электронной схемы;
  • TX LED (White) – светодиод — индикатор отправления данных по UART;
  • RX LED (Red) – светодиод — индикатор приёма данных по UART;
  • Power LED (Blue) – светодиод — индикатор питания;
  • Pin 13 LED (Wellow) – подключенный светодиод к 13-му пину.

Описание пинов/Распиновка Arduino Nano


Каждый из 14 цифровых выводов Nano, используя функции pinMode() , digitalWrite() , и digitalRead() , может настраиваться как вход или выход. Выводы работают при напряжении 5 В. Каждый вывод имеет нагрузочный резистор 20-50 кОм и может пропускать до 40 мА. Некоторые выводы имеют особые функции:

  • Последовательная шина : 0 (RX) и 1 (TX). Выводы используются для получения (RX) и передачи (TX) данных TTL. Данные выводы подключены к соответствующим выводам микросхемы последовательной шины FTDI USB-to-TTL.
  • Внешнее прерывание : 2 и 3. Данные выводы могут быть сконфигурированы на вызов прерывания либо на младшем значении, либо на переднем или заднем фронте, или при изменении значения. Подробная информация находится в описании функции attachInterrupt() .
  • ШИМ : 3, 5, 6, 9, 10, и 11. Любой из выводов обеспечивает ШИМ с разрешением 8 бит при помощи функции analogWrite() .
  • SPI : 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Посредством данных выводов осуществляется связь SPI, которая, хотя и поддерживается аппаратной частью, не включена в язык Arduino.
  • LED : 13. Встроенный светодиод, подключенный к цифровому выводу 13. Если значение на выводе имеет высокий потенциал, то светодиод горит.

На платформе Nano установлены 8 аналоговых входов, каждый разрешением 10 бит (т.е. может принимать 1024 различных значения). Стандартно выводы имеют диапазон измерения до 5 В относительно земли, тем не менее имеется возможность изменить верхний предел посредством функции analogReference() . Некоторые выводы имеют дополнительные функции:

  • I2C : A4 (SDA) и A5 (SCL). Посредством выводов осуществляется связь I2C (TWI). Для создания используется библиотека Wire.

Дополнительная пара выводов платформы:

  • AREF . Опорное напряжение для аналоговых входов. Используется с функцией analogReference() .
  • Reset . Низкий уровень сигнала на выводе перезагружает микроконтроллер. Обычно применяется для подключения кнопки перезагрузки на плате расширения, закрывающей доступ к кнопке на самой плате Arduino.

Питание Arduino Nano

Arduino Nano может получать питание через подключение Mini-B USB, или от нерегулируемого 6-20 В (вывод 30), или регулируемого 5 В (вывод 27), внешнего источника питания. Автоматически выбирается источник с самым высоким напряжением.

Микросхема FTDI FT232RL (или CH340G) получает питание, только если сама платформа запитана от USB. Таким образом при работе от внешнего источника (не USB), будет отсутствовать напряжение 3.3 В, генерируемое микросхемой FTDI FT232RL (или CH340G), при этом светодиоды RX и TX мигаю только при наличие сигнала высокого уровня на выводах 0 и 1.

Установка драйверов

В Windows драйверы будут установлены автоматически, при подключении платы, если вы использовали установщик . Если вы загрузили и распаковали Zip архив или по какой-то причине плата неправильно распознана, выполните приведенную ниже процедуру.

  • Нажмите на меню «Пуск » и откройте панель управления.
  • Перейдите в раздел «Система и безопасность » (System and Security). Затем нажмите «Система» (System). Затем откройте диспетчер устройств (Device manager).
  • Посмотрите под Порты (COM и LPT) (Ports (COM & LPT)). Вы должны увидеть открытый порт с именем «FT232R USB UART ». Если раздел COM и LPT отсутствует, просмотрите раздел «Другие устройства», «Неизвестное устройство».
  • Щелкните правой кнопкой мыши по порту FT232R USB UART и выберите опцию «Обновить драйверы… ».
  • Затем выберите опцию «Выполнить поиск драйверов на этом компьютере ».
  • Наконец, найдите каталог FTDI USB Drivers , который находится в папке «Drivers » программы Arduino.
  • После этого Windows завершит установку драйвера.

Выбор платы и порта

Откройте Arduino IDE. Из меню Tools>Board выбирается Arduino Nano .

Выберите микроконтроллер, на базе которого сделана ваша плата. Для Arduino Nano V3.x — это ATmega328P, а для Arduino Nano V2.x — ATmega128.

Выберите последовательный порт платы в меню Tools>Port . Скорее всего, это COM3 или выше (в моём случае — это COM5).

Если у вас модель Arduino Nano CH340G, то лучше использовать программатор Arduino as ISP

Wikispaces was founded in 2005 and has since been used by educators, companies and individuals across the globe.

Unfortunately, the time has come where we have had to make the difficult business decision to end the Wikispaces service.

We first announced the site closure in January 2018, through a site-wide banner that appeared to all logged-in users and needed to be clicked on to dismiss

During the closure period a range of banners were shown to users, including a countdown banner in the final month. Additionally, the home page of Wikispaces.com became a blog, detailing the reasons for the closure. Private Label Site Administrators were contacted separately regarding the closure

Wikispaces Tier Closedown Date
Classroom and Free Wikis end of service 31st July 2018
Plus and Super Wikis end of service 30th September 2018
Private Label Wikis end of service 31st January 2019

Why has Wikispaces closed?

Approximately 18 months ago, we completed a technical review of the infrastructure and software we used to serve Wikispaces users. As part of the review, it became apparent that the required investment to bring the infrastructure and code in line with modern standards was very substantial. We explored all possible options for keeping Wikispaces running but had to conclude that it was no longer viable to continue to run the service in the long term. So, sadly, we had to close the site - but we have been touched by the messages from users all over the world who began creating wikis with it and now running them on new platforms.

We would like to take this opportunity to thank you for your support over the years.

Большинство плат Arduino производятся со встроенным USB-to-Serial преобразователем. Последнее время для этих целей используют микросхему CH340. Эта микросхема сильно снижает затраты на изготовление микроконтроллеров, а на работоспособность абсолютно не влияет. Так же ее используют в программаторах для устройств в которых нет встроенной поддержки USB соединения. С помощью таких программаторов можно легко прошивать . Об этом мы рассказывали в .

Есть только одно «но». По умолчанию в системе windows не установлен драйвер для работы с этой микросхемой. Из-за этого устройство может работать не правильно или вообще не опознается. Что бы это исправить необходимо скачать и установить драйвер CH340G. Ссылки на драйвер и инструкция по установке есть ниже.

Скачать драйвер CH340G

Установка драйвера

  1. Скачайте драйвер для вашей операционной системы по ссылкам выше.
  2. Распакуйте архив
  3. Запустите исполнительный файл SETUP.EXE
  4. В открывшемся окне нажмите кнопку Install
  5. На этом установка завершена

Если статья оказалась вам полезна то я очень рад. А если вы воспользуетесь социальными кнопками ниже то я буду рад в 2 раза больше 🙂